
Flexible QUIC loss recovery

mechanisms for latency-sensitive

applications

François Michel

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Applied Sciences

October 2023

ICTEAM
Louvain School of Engineering

Université catholique de Louvain
Louvain-la-Neuve

Belgium

Thesis Committee:

Pr. Olivier Bonaventure (Advisor) UCLouvain, Belgium
Pr. Etienne Rivière UCLouvain, Belgium
Pr. Jérôme Louveaux UCLouvain, Belgium
Pr. Anna Brunström Karlstad University, Sweden
Pr. Oliver Hohlfeld University of Kassel, Germany
Pr. Peter Van Roy (Chair) UCLouvain, Belgium



Flexible QUIC loss recovery mechanisms for latency-sensitive
applications
by François Michel

© François Michel 2023
ICTEAM
Université catholique de Louvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

This work was partially supported by the F.R.S-FNRS.



I apologize for sending so many packets. If I had
more time, I would surely have sent less.

Inspired by Blaise Pascal, Lettres Provinciales, 1657.





Acknowledgments

While this thesis focuses on the impact of loss recovery mechanisms on pro-
tocol performance, this acknowledgement section highlights the impact of
other humans on the human writer of this document. Their presence had a
direct positive impact on my productivity as well as my happiness throughout
these years. Therefore, I thank all these people for making my life thrilling
and stimulating.

I thank my parents Brigitte Duriau and Jean-Luc Michel, my brother Martin
Michel and my brother-in-law Malik Duhaut for their long lasting support, ad-
vices and precious family moments. I thank my dear girlfriend Margerie Huet
Dastarac for making my life sweet and exciting, for the numerous breakfasts,
workoffees, sport sessions and the unforgettable life moments we live together.
I thank all my friends, including my previous and current housemates, as
well as most of my colleagues who constantly enhance my everyday life. I
specifically want to thank Arnaud Devillers for growing and evolving together,
attending concerts and festivals and revisiting the world for now more than
twenty-five years. Speaking of music, I also thank François Dekeersmaeker
for his contagious joy and the already numerous memories we have together.
I thank Brandon Naitali for our frequent giggles, Robin Descamps for all his
funny stories and our long discussions and Romain Laurent for our made-
up expressions and private jokes. I thank my colleagues and friends from
the IP Networking Lab and INGI department, Maxime Piraux, Louis Navarre,
Thomas Wirtgen, Nicolas Ribowski, Quentin De Coninck, Tom Barbette, Tom
Rousseaux, Mathieu Pigaglio, Donatien Schmitz, Christophe Crochet, Gorby
Kabasele and Anthony Gego. I thank the jury members, Anna Brunström,
Oliver Hohlfeld, Etienne Rivière, Jérôme Louveaux and Peter Van Roy for
allocating some of their precious time to evaluate this thesis and providing
relevant and insightful comments.

Last but not least, I thank my promoter Olivier Bonaventure for his precious
work and life advices, his crazy ideas and for dedicating his time to make the
world a better place in many more aspects than computer networking.

i





Contents

Acknowledgments i

Table of Contents iii

Preamble 1

1 Background 9

1.1 Sending data over a network . . . . . . . . . . . . . . . . . . . 9
1.2 Transport protocols . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 The User Datagram Protocol . . . . . . . . . . . . . . . 10
1.2.2 The Transmission Control Protocol . . . . . . . . . . . 11

1.3 Reliable data transfer . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Selective-Repeat Automatic Repeat Request . . . . . . 12
1.3.2 Loss detection . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Congestion control . . . . . . . . . . . . . . . . . . . . 15

1.3.3.1 Loss-based congestion control . . . . . . . . 16
1.3.3.2 BBR . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.4 Transport layer security . . . . . . . . . . . . . . . . . 18
1.4 The QUIC protocol . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Reduced and secure connection establishment . . . . . 19
1.4.2 The QUIC packet . . . . . . . . . . . . . . . . . . . . . 20

1.4.2.1 QUIC packet format . . . . . . . . . . . . . . 20
1.4.3 Stream multiplexing: avoiding head-of-line blocking . 22

1.4.3.1 Frames: control information as part of the
encrypted payload . . . . . . . . . . . . . . . 23

1.4.4 QUIC loss recovery . . . . . . . . . . . . . . . . . . . . 24
1.4.4.1 Loss detection . . . . . . . . . . . . . . . . . 25

1.4.5 A broad class of applications . . . . . . . . . . . . . . . 26
1.5 Forward Erasure Correction . . . . . . . . . . . . . . . . . . . 26

1.5.1 Coding theory primer . . . . . . . . . . . . . . . . . . 27
1.5.1.1 Block codes and Reed-Solomon . . . . . . . 27
1.5.1.2 Fountain codes and Random Linear Network

Coding . . . . . . . . . . . . . . . . . . . . . 29
1.5.1.3 Systematic codes . . . . . . . . . . . . . . . 30

1.5.2 Protecting network packets . . . . . . . . . . . . . . . 31

iii



iv Contents

1.5.3 Mode of operation . . . . . . . . . . . . . . . . . . . . 31
1.5.4 FEC as a transport loss recovery mechanism . . . . . . 33

2 QUIC-FEC: A general loss recovery QUIC extension 35

2.1 Forward Erasure Correction for long-delay communications . 35
2.2 Integrating FEC into QUIC . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Defining and exchanging the source and repair symbols 36
2.2.2 The FEC Framework . . . . . . . . . . . . . . . . . . . 37

2.2.2.1 Studied FEC schemes. . . . . . . . . . . . . . 38
2.2.3 FEC and the congestion control . . . . . . . . . . . . . 39

2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1.1 Experimental design . . . . . . . . . . . . . 41
2.3.1.2 Reproducible experiments . . . . . . . . . . 42

2.3.2 Results with uniform losses . . . . . . . . . . . . . . . 43
2.3.2.1 Specific IFC use-cases . . . . . . . . . . . . . 43

2.3.2.1.1 Direct Air-To-Ground Communi-
cation (DA2GC) . . . . . . . . . . . 43

2.3.2.1.2 Mobile Satellite Service (MSS) . . . 45
2.3.2.2 Experimental design . . . . . . . . . . . . . 46

2.3.2.2.1 Large files transfers . . . . . . . . 46
2.3.2.2.2 Small files transfers . . . . . . . . . 46
2.3.2.2.3 Comparing FEC codes . . . . . . . 47

2.3.2.3 Exploring the impact of redundancy overhead 47
2.3.2.4 The importance of recovery notification . . 49

2.3.3 Results with bursty losses . . . . . . . . . . . . . . . . 50
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 The interactions between FEC and congestion control 53

3.1 Symbols and packets are conceptually separate data units . . . 53
3.2 Congestion control behaviour upon symbol recovery . . . . . 55

4 PQUIC: towards really flexible transport protocols 57

4.1 Pluginizing QUIC . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.1 Pluglet Runtime Environment (PRE) . . . . . . . . . . 60
4.1.2 Protocol Operations . . . . . . . . . . . . . . . . . . . 61
4.1.3 Attaching Protocol Plugins . . . . . . . . . . . . . . . 63
4.1.4 Interacting with Applications . . . . . . . . . . . . . . 66

4.2 Extending the loss recovery using protocol plugins . . . . . . 66
4.2.1 Design & implementation . . . . . . . . . . . . . . . . 66
4.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Plugin Overhead . . . . . . . . . . . . . . . . . . . . . 68



Contents v

4.3 Validating Plugins . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 FlEC: application-tailored loss recovery using protocol plugins 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Adaptive Forward Erasure Correction . . . . . . . . . . . . . . 74

5.2.1 Bulk file transfer . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Buffer-limited file transfers . . . . . . . . . . . . . . . 76
5.2.3 Delay-constrained messaging . . . . . . . . . . . . . . 77

5.3 FlEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 Comparing FlEC and previous work . . . . . . . . . . 81

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Bulk file transfers . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.1 Bulk loss recovery mechanism . . . . . . . . . . . . . . 83
5.5.2 Evaluation FlEC for the bulk scenario . . . . . . . . . . 83

5.5.2.1 Experimental design . . . . . . . . . . . . . 84
5.5.2.2 Experimenting with a real network . . . . . 86
5.5.2.3 CPU performance . . . . . . . . . . . . . . . 87

5.6 Buffer-limited file transfers . . . . . . . . . . . . . . . . . . . . 87
5.6.1 Loss recovery mechanism . . . . . . . . . . . . . . . . 88
5.6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.2.1 FlEC for SATCOM . . . . . . . . . . . . . . . 88
5.6.2.1.1 Transfer completion time and through-

put. . . . . . . . . . . . . . . . . . 90
5.6.2.1.2 Delay-bandwidth tradeoff. . . . . . 91

5.6.2.2 Experimental design analysis . . . . . . . . . 92
5.7 Delay-constrained messaging . . . . . . . . . . . . . . . . . . 93

5.7.1 Reliability mechanism . . . . . . . . . . . . . . . . . . 94
5.7.1.1 Application-specific API . . . . . . . . . . . 94

5.7.1.1.1 send_fec_protected_msg(msg, dead-
line) . . . . . . . . . . . . . . . . . 94

5.7.1.1.2 next_message_arrival(time) . . 94
5.7.1.2 Application-tailored stream scheduler . . . . 94
5.7.1.3 FECPattern() and ds() for delay-constrained

messaging . . . . . . . . . . . . . . . . . . . 96
5.7.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Starlink: analyzing a new access network 103

6.1 A new wireless access network . . . . . . . . . . . . . . . . . . 103
6.2 Testbed and Measurements . . . . . . . . . . . . . . . . . . . . 104
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



vi Contents

6.3.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.1.1 Latency during inactivity . . . . . . . . . . . 108
6.3.1.2 Latency under load . . . . . . . . . . . . . . 109

6.3.2 Characterizing packet losses . . . . . . . . . . . . . . . 110
6.3.2.1 Packet losses during HTTP/3 transfers . . . 110
6.3.2.2 Packet losses during low bitrate transfers . . 111

6.3.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.3.1 Speed test results . . . . . . . . . . . . . . . 112
6.3.3.2 HTTP/3 transfers . . . . . . . . . . . . . . . 113

6.3.4 Browsing Performance . . . . . . . . . . . . . . . . . . 114
6.3.5 Middleboxes and traffic discrimination . . . . . . . . . 115

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 QUIRL: improvements for real applications on real networks 117

7.1 Existing FEC extensions for QUIC . . . . . . . . . . . . . . . . 117
7.2 QUIRL Design principles . . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Identifying FEC-protected payloads . . . . . . . . . . . 119
7.2.2 Serializing the repair symbols . . . . . . . . . . . . . . 120
7.2.3 QUIRL and congestion control . . . . . . . . . . . . . . 120
7.2.4 Scheduling the repair symbols . . . . . . . . . . . . . . 121

7.3 Implementing QUIRL . . . . . . . . . . . . . . . . . . . . . . . 122
7.3.1 Erasure Correcting Codes . . . . . . . . . . . . . . . . 122
7.3.2 WebTransport . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Latency-sensitive video streams . . . . . . . . . . . . . . . . . 123
7.4.1 Redundancy scheduler . . . . . . . . . . . . . . . . . . 123
7.4.2 Reducing the latency of GStreamer RTP flows . . . . . 124
7.4.3 Starlink setup . . . . . . . . . . . . . . . . . . . . . . . 126
7.4.4 Real network experiments results . . . . . . . . . . . . 127

7.5 HTTP/3 objects . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5.1 Improving curl’s TCT over Starlink . . . . . . . . . . . 131
7.5.2 Exploring diverse network configurations with Mininet 133

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Conclusion 137



Introduction

Since its wide deployment in 2017, the QUIC [RFC9000] protocol has pro-
gressively gained in popularity over the years. QUIC inherits from decades
of protocol design experience and gathers the features of several transport
protocols including UDP [RFC768], TCP [RFC791] and SCTP [RFC4960]. QUIC
supports diverse transport services that make it suitable to welcome a broader
set of applications than these three protocols taken separately. As a result, new
applications with different goals and requirements are successively built on
top of QUIC to serve diverse use-cases, some of them being strongly impacted
by the connection latency. A good example is the MASQUE proxy, used to
proxy all kinds of network traffic over QUIC [Sch23]. Previous works have
also defined QUIC mappings for the RTP protocol [OE23]. More recently, the
IETF chartered the Media Over QUIC working group to specify live media
transport atop QUIC [Cur+23]. Currently, the QUIC protocol only relies on
retransmissions to recover from packet losses [RFC9002]. Being efficient in
terms of bandwidth, retransmissions work well for throughput-based appli-
cations such as large HTTP and file transfers. However, the protocol needs
at least one round-trip time to detect lost packets and retransmit them. This
added latency to recover from packet losses is undesirable for applications with
strong latency requirements. This thesis therefore starts with the following
problem statement.

The latency increase of retransmissions-based loss recovery mecha-
nisms may prevent QUIC from being suitable for latency-sensitive
applications on lossy networks.

Our goal is to make the loss recovery mechanism of the QUIC protocol
more general. More specifically, we want the protocol to support a broader
class of applications by being able to recover faster from network losses using
Forward Erasure Correction (FEC) techniques when needed. The contributions
of this thesis are the following:

1. We study the overhead and congestion control impacts of adding FEC to
the QUIC protocol that is also used for throughput-intensive workloads.

2. We make it easier to implement and deploy QUIC extensions such as
FEC on a per-connection basis.

1



2 Contents

3. We propose a flexible QUIC loss recovery mechanism, allowing to tailor
the loss recovery behaviour to the application requirements.

4. We provide an analysis of the Starlink network, showing that packet
losses are still common nowadays.

5. We finally provide an efficient implementation of our flexible loss re-
overy mechanism and integrate it with two popular network appli-
cations. We show that a flexible QUIC loss recovery mechanism can
provide latency improvements for real applications on real lossy net-
works.

FEC is not new and is already used at different levels of the network stack,
whether it is performed at the physical layer to recover from bit errors or in
applications themselves when they have strict latency requirements. What is
less common is to see FEC being part of a multi-purpose protocol like QUIC.
Intuitively, recovering faster from packet losses seems appealing in many
scenarios and looks like an always-winning approach. However, a technique
like FEC in the transport layer comes with its own lot of misconceptions and
one needs to dismantle them with care before starting to get real benefits
from the technique. An interesting fact is that an elementary form of FEC
had already been implemented and evaluated at a large scale by Google even
before the beginning of this thesis. The technique used by Google in this first
study led to poor results in real-world experiments [Lan+17]. FEC was then
evicted from the roadmap of the first version of QUIC and put aside for later.

In order to make it work, we first had to identify the different reasons
behind these poor results. Aside the simple FEC techniques that were used,
one of the most important reasons is probably that every application does not
benefit the same way from FEC. Sending redundancy to protect file transfers
simlarly to real-time media is going to provide bad results in most scenarios,
even in a lossy network. This is why we rapidly reached the conclusion that
FEC must be adapted to the application requirements if we want it to work in
a multi-purpose transport protocol.

An interesting question is why implementing FEC at the transport layer ?
Shouldn’t it be left at the physical layer ? First, when applied at the physical
layer, FEC can only recover from losses caused by the physical impediments of
the channel itself. Losses due to congestion cannot be corrected. While it might
seem counter-intuitive at a first glance to recover from congestion-induced
losses using FEC, it is a good way to avoid the latency penalty of such losses
during short-timed congestion events. Furthermore, we will see throughout
this thesis that a FEC-enabled sender may obtain latency benefits while sending
at the same rate as a regular QUIC sender, adapting its congestion window
and sending rate in the exact same way.



Contents 3

One might also wonder whether FEC should not better be implemented
by applications themselves. Indeed, application can always implement the
transport features they need to optimize the data transfer to their own require-
ments. However, the price to pay is the increased implementation complexity.
FEC can be and is sometimes implemented inside applications, but this claim
also holds for flow control, congestion control QUIC stream scheduling or
even multipath scheduling. Yet, these features are all part of the QUIC proto-
col itself and allow many applications to stay straightforward by reusing the
existing transport services. In some parts of this thesis, we explore a hybrid
approach, where the FEC signaling, encoding and decoding is performed by
the transport protocol while the application can provide its own tailored re-
dundancy scheduler that fit its needs. On top of that, it is interesting to observe
that the transport layer acts at as an interesting rendez-vous point gathering
knowledge from the network (e.g. delay, loss rate, congestion state) and the
application requirements. With its broad set of features, a QUIC sender has to
go through a large set of scheduling tasks. Among others, it must schedule
the stream to send first, the frames to pack in a packet, and with the recent
multipath extension, the network path on which a packet will be sent [Liu+23].
Implementing the FEC behaviour inside the transport protocol allows it to
take clever decisions, being aware of all the different kinds of constraints that
it has to fullfill. For instance, a conjoint scheduling of the sending path and
the FEC redundancy may lead to significantly better results than performing
these two tasks separately, as it allows recovering packet losses occuring on
one path by sending FEC on the other. Finally, we show in this thesis that FEC
can be beneficial for the performance of the QUIC protocol itself as it can be
used to unblock the flow control mechanism earlier than retransmissions in
buffer-limited scenarios. This cannot be done at the application level.

The QUIC specification changed significantly since the beginning of this
thesis. There also exist different implementations of the QUIC protocol, each
one having its own pros and cons. Some of them did not exist at the beginning
of this thesis or were at an embryonic state. The different chapters therefore
present different iterations of our solution using different QUIC implementa-
tions. The solution proposed in this thesis is built incrementally throughout
the chapters, studying different aspects of the problem one after the other.

■ Chapter 1 introduces the different concepts needed to clearly under-
stand the system and problematics we work on. We introduce the base
transport protocols concepts and take a closer look at the QUIC design.
We then discuss the basics of Forward Erasure Correction and present
the existing algorithms we leverage in this thesis.

■ Chapter 2 presents QUIC-FEC, our first extended loss recovery mecha-
nism for QUIC. It studies and compares several erasure correcting codes,



4 Contents

proposes a base protocol design for FEC-protected QUIC connections
and studies interesting aspects to consider when implementing FEC
in a transport protocol. This first version does not adapt the sending
of redundancy to the network characteristics and clearly identifies the
limits of this approach for throughput-based applications such as HTTP
file transfers. This chapter provides a first basis on top of which the
following works bring flexibility and adaptability.

■ Chapter 3 extends the discussion on the interactions between FEC and
congestion control started in Chapter 2. The work of Chapter 2 led us
to discuss and present our solution at the Internet Engineering Task
Force. We contributed actively to the Coding for efficient NetWork
Communications Research Group (NWCRG) and iteratively developed
there an internet draft dedicated to the joint use of FEC and congestion
control. This draft then became the RFC9265 informational document.
Chapter 3 focuses on a few aspects of this RFC.

■ Chapter 4 presents PQUIC, a QUIC implementation allowing redefining
protocol behaviours on a per-connection basis by inserting application-
defined protocol plugins running in a sandboxed environment. Using
PQUIC, some connections can use a FEC-enabled loss recovery mecha-
nism while others can stick to the regular QUIC loss recovery. PQUIC
also eases the deployment of such extensions, allowing servers to plug
the FEC extension directly on the client on a specific connection, without
the need to wait for web browsers and mobile clients to be updated to
use FEC. This chapter proposes a first FEC extension fully implemented
using protocol plugins, showing the flexibility of the approach. The
evaluation also shows that there is an interest in adapting the amount
of redundancy not only to the network but also to the underlying appli-
cation. This is an idea we pursue in the following chapters.

■ Chapter 5 proposes Flexible Erasure Correction (FlEC), the next itera-
tion of our solution. Entirely based on protocol plugins, FlEC proposes
a general FEC-enabled loss recovery mechanism adaptive to both the
network loss characteristics and the application’s traffic pattern and
requirements. With only a few lines of code and thanks to protocol
plugins, applications can define a FEC redundancy scheduler that closely
fits their needs. We show the benefits of FlEC in three different sce-
narios, including real-time video transfers. We also discuss the limits
of the PQUIC approach upon which FlEC relies. Indeed, while simu-
lation results clearly show the benefits of FlEC, we observe that the
computational overhead of the framework deteriorates the performance
when applied on real networks. These observations pave the way for the



Contents 5

following chapters focused on providing benefits for real applications
over real networks.

■ Chapter 6 studies the characteristics of a Starlink vantage point we rent
in Belgium. We specifically focus on loss events, their patterns and
duration. We find that loss events are numerous and that an efficient
implementation of a FEC-enabled loss recovery mechanism may bring
significant improvements to latency-sensitive real-world applications,
motivating the chapter that follows.

■ Chapter 7 starts from the performance issues of FlEC and proposes
QUIRL, an efficient design and implementation for our FEC-enabled loss
recovery. Built on a production-ready and mature QUIC implementa-
tion, we show that QUIRL shows significant latency improvements for
deployed network applications, namely curl and GStreamer over the
Starlink network studied in Chapter 6.

The final prototype presented in Chapter 7 constitutes an efficient imple-
mentation of our extended loss recovery mechanism, adaptive to both the
application and the network characteristics. Being based on the version 1 of
QUIC, this implementation will be maintained up-to-date and improved over
time. We encourage researchers and users around the world to experiment
with our work and reach out to us for help and interesting findings. The source
code, experimental scripts and results of every piece of work produced during
this thesis is publicly available and listed in the Artefacts section hereunder.

Several other articles have been published during this thesis but are not dis-
cussed in this manuscript [Coh+21; Kuh+22; MB21b; Pir+22; Bon+20; NMB21].

Bibliographic notes

Conference Publications

1. F. Michel, Q. De Coninck, and O. Bonaventure. “QUIC-FEC: Bringing
the benefits of Forward Erasure Correction to QUIC”. in: 2019 IFIP
Networking Conference (IFIP Networking). IEEE. 2019, pp. 1–9.

2. Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson, A.
Legay, O. Pereira, and O. Bonaventure. “Pluginizing QUIC”. in: Proceed-
ings of the ACM Special Interest Group on Data Communication. 2019,
pp. 59–74.

3. F. Michel, M. Trevisan, D. Giordano, and O. Bonaventure. “A first look
at starlink performance”. In: Proceedings of the 22nd ACM Internet
Measurement Conference. 2022, pp. 130–136.



6 Contents

Journal Publications

1. N. Kuhn, E. Lochin, F. Michel, and M. Welzl. Forward Erasure Correction
(FEC) Coding and Congestion Control in Transport. RFC 9265. July 2022.
doi: 10.17487/RFC9265. url: https://www.rfc-editor.org
/info/rfc9265.

2. F. Michel, A. Cohen, D. Malak, Q. De Coninck, M. Médard, and O.
Bonaventure. “FlEC: Enhancing QUIC With Application-Tailored Re-
liability Mechanisms”. In: IEEE/ACM Transactions on Networking 31.2
(2023), pp. 606–619. doi: 10.1109/TNET.2022.3195611.

Under submission

1. F. Michel and O. Bonaventure. “QUIRL: efficiently reducing QUIC appli-
cations latency using Forward Erasure Correction”. In: (2023).

Artefacts

1. The code for QUIC-FEC (Chapter 2) and the scripts for the experi-
ments [Mic23d] as well as ebpf_dropper [Mic23a] are publicly avail-
able.

2. The code for PQUIC (Chapter 4) and the different plugins implemented
is publicy available [PquicRepo].

3. Simulations scripts and the code of FlEC (Chapter 5) are publicly avail-
able [Mic23b; Mic23c].

4. All the data gathered to compute the results discussed in Chapter 6 are
publicly available [Mic+23b]. This includes pings, traceroute, Tracebox,
speed test and BrowserTime results as well as more than 530 Gigabytes
of QUIC packet captures along with their encryption keys.

5. The code for QUIRL (Chapter 7), the curl client, the RTP relay as well as
the packet captures and decryption keys are publicly available [Mic23e].

Miscellaneous Contributions

1. A. Cohen, H. Esfahanizadeh, B. Sousa, J. P. Vilela, M. Luis, D. Raposo,
F. Michel, S. Sargento, and M. Medard. “Bringing network coding into
SDN: Architectural study for meshed heterogeneous communications”.
In: IEEE Communications Magazine 59.4 (2021), pp. 37–43.

https://doi.org/10.17487/RFC9265
https://www.rfc-editor.org/info/rfc9265
https://www.rfc-editor.org/info/rfc9265
https://doi.org/10.1109/TNET.2022.3195611


Contents 7

2. N. Kuhn, F. Michel, L. Thomas, E. Dubois, E. Lochin, F. Simo, and D.
Pradas. “QUIC: Opportunities and threats in SATCOM”. in: International
Journal of Satellite Communications and Networking 40.6 (2022), pp. 379–
391.

3. F. Michel and O. Bonaventure. “Packet delivery time as a tiebreaker for
assessing Wi-Fi access points”. In: IAB Workshop on Measuring Network
Quality for End-Users. 2021.

4. M. Piraux, T. Barbette, N. Rybowski, L. Navarre, T. Alfroy, C. Pelsser, F.
Michel, and O. Bonaventure. “The multiple roles that IPv6 addresses can
play in today’s internet”. In: ACM SIGCOMM Computer Communication
Review 52.3 (2022), pp. 10–18.

5. O. Bonaventure, Q. De Coninck, F. Duchêne, A. Gego, M. Jadin, F. Michel,
M. Piraux, C. Poncin, and O. Tilmans. “Open educational resources for
computer networking”. In: ACM SIGCOMM Computer Communication
Review 50.3 (2020), pp. 38–45.

6. L. Navarre, F. Michel, and O. Bonaventure. “SRv6-FEC: bringing forward
erasure correction to IPv6 segment routing”. In: Proceedings of the
SIGCOMM’21 Poster and Demo Sessions. 2021, pp. 45–47.





Background 1

This chapter explains the different concepts that this thesis relies on. It also
describes the current state-of-the-art techniques for end-to-end data transmis-
sion over the Internet.

1.1 Sending data over a network

A significant fraction of the electronic devices produced nowadays are “net-
work capable”: they are able to communicate with other devices using specific
pieces of hardware called network adapters. These adapters rely on different
communication technologies depending on the device and its intended use.
For instance, personal computers can be connected to others using RJ-45 cables
or wirelessly using Bluetooth or Wi-Fi adapters. Smartphones can transmit
data over a cellular network in addition to Wi-Fi. Other devices can also
communicate with satellites.

All these communication technologies have practical limitations that make
it unfeasible to directly connect two devices solely through their network
adapters if they are kilometers away from each other. The standard solution is
to rely on a network to connect devices regardless of their geographic position.
In a network, each host is connected to one or more routers. The role of a
router is to forward the data towards its destination. The router will either
forward the data directly to the destination if they are connected to each other
or forward the data to another router that is closer to the destination when
they are not in direct reach.

In order to operate correctly, devices and routers need to agree on how
to identify the connected hosts of the network. The Internet Protocol (IP)
[RFC791] defines semantics to transmit data between hosts identified by an
IP address. An IP address is a fixed-size integer whose size depends on the
version of the protocol (32 bits for IP version 4 and 128 bits for IP version
6 [RFC8200]).

Routers in an IP network can only handle data units of limited size called
packets. The IP protocol defines the Maximum Transmission Unit (MTU) as
the maximum size of an IP packet payload.

9



10 Chapter 1. Background

1.2 Transport protocols

Routers of an IP network essentially provide a best effort forwarding service
for MTU-sized packets of the hosts. The forwarded packets can be lost, dupli-
cated or altered due to impairments in the network (such as electromagnetic
interferences, congestion in the network or power outages). Hosts that need
more guarantees on their data transfer can rely on transport protocols that
operate on top of IP. Transport protocols provide services to applications run-
ning on the hosts. The Linux kernel implements several transport protocols
and provides their services through the socket API [SOCKET]. An application
running on Linux can specify the kind of service it wants by setting the socket
type when using the socket API, leading to different transport protocols being
used. The most common socket types are DGRAM and STREAM.

■ DGRAM: The application can send datagrams with a limited size in a
best-effort manner. This is close to the regular services that IP networks
natively provide. The application can optionally ask for not receiv-
ing packets that have been corrupted during their transit through the
network.

■ STREAM: The application has access to a bidirectional bytestream. There
is no size limitation to the data exchanged. The data are transmitted
reliably and in-order to the peer.

In the current Linux kernel, the underlying transport protocols are the User
Datagram Protocol (UDP) [RFC768] for DGRAM sockets and the Transmission
Control Protocol (TCP) [RFC791] for STREAM sockets. UDP and TCP packets
are placed in the payload of IP packets.

1.2.1 The User Datagram Protocol

The User Datagram Protocol (UDP) provides a straightforward datagram deliv-
ery service to applications connected to an IP network. The UDP specification
defines the packet format that peers need to implement in order to exchange
datagrams using UDP. The packet format is depicted in Figure 1.1.

The Source port and Destination port fields identify the application sending
and receiving the packet. This allows having several UDP endpoints using a
single IP address. The Payload length field indicates the length of the applica-
tion payload carried by the packet. The Checksum field provides a protection
against transmission errors altering the packet payload when transiting in
the network. Upon the reception of a packet, a UDP receiver can directly
deliver the packet payload to the application, independently of the fact that
the previous packet was already received or not.



1.2. Transport protocols 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source port Destination port

Payload length Checksum

 Header

Payload
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 1.1: UDP packet format.

UDP is a connectionless transport protocol. It does not maintain any proto-
col state between the two communicating endpoints.

Recently, extensions have been proposed for the UDP packet format to
attach options and metadata to a UDP packet [Tou22], allowing for instance to
redefine the UDP checksum computation or authenticating cryptographically
the packet.

1.2.2 The Transmission Control Protocol

The Transmission Control Protocol (TCP) allows providing a reliable bidirec-
tional bytestream abstraction to the application. An application can send an
arbitrary number of bytes on a STREAM socket and TCP will ensure that they
will all be delivered in sequence to the receiver regardless of the presence of
network impairments such as packet loss, corruption or reordering. The TCP
packet format is depicted in Figure 1.2.

For the same reasons as UDP, TCP integrates a source and destination
port as well as a checksum in its packet format. The Sequence Number field
indicates the byte position of the packet payload in the bytestream. The
Acknowledgement Number field is used by the TCP receiver to indicate the next
expected sequence number for the stream to be delivered in sequence. There is
no missing byte with a sequence number smaller than the acknowledgement
number. The Data Offset field indicates the length of the TCP header, expressed
in 32-bits word units. The Window field indicates the receive window of the
receiver, indicating the amount of bytes that can be stored in the receiver’s
buffers starting from the acknowledgement number. Finally, the TCP header
allows encoding one or several options to customize the protocol. Due to
limitations of the TCP header size expressed in the Data Offset field (60 bytes),
the Options field size is limited to a maximum of 40 bytes. This is an important



12 Chapter 1. Background

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source port Destination port

Sequence Number
Acknowledgement Number

Data
Offset Reserved Flags Window

Checksum Urgent Pointer
[Options & padding]

...


Header

Payload
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 1.2: TCP packet format.

limitation of the TCP protocol reducing its extensibility, leading to recent but
not-yet-standardized propositions of extending the Data Offset field [TE22].

TCP is a connection-oriented transport protocol: a stateful connection is
created between the two communicating endpoints. Maintaining a connection
state is needed by TCP to provide a reliable data transfer to the application.

1.3 Reliable data transfer

TCP ensures a fully reliable delivery of the application data exchanged by the
peers and therefore has to cope with network impairments such as packet loss
or corruption. In order to do so, transport protocols rely on the retransmission
of the lost or corrupted data by implementing a loss recovery mechanism. The
loss recovery mechanism defines strategies to identify the lost data from
the receiver’s acknowledgements and retransmit the missing parts of the
bytestream. There exist several retransmission strategies of lost data. In this
thesis, we focus on the Selective-Repeat Automatic Repeat Request (SR-ARQ)
mechanism implemented by most recent transport protocols.

1.3.1 Selective-Repeat Automatic Repeat Request

In SR-ARQ, the receiver indicates the sequence numbers of the correctly
received packets by sending an acknowledgement (ACK) to the sender. The



1.3. Reliable data transfer 13

Sender Receiver
Data([0..10])
Data([10..20])
Data([20..30])

Ack([0..10], [20..30], [40..50])

Data([30..40])

Data([30..40])

Data([40..50])

Data([10..20])

Ack([0..10], [20..30], [40..50])

Retransmission

Figure 1.3: SR-ARQ recovering from packet losses.

sender identifies the lost packets using its loss detection mechanism and then
selectively repeats every missing piece of data to the receiver. Figure 1.3 shows
a generic SR-ARQ mechanism recovering from packet losses when transmitting
60 bytes on the network. In this example, the second and fourth packets are
lost. The receiver indicates the received data in its acknowledgement. Once it
identifies that some data are missing, the sender retransmits the lost packets
to ensure the reliable delivery of the sent data.

Recent versions of TCP typically implement an SR-ARQ mechanism to
ensure the reliable delivery of the bytestream. However, the TCP header
only allows indicating the highest byte received in sequence, through its
Acknowledgement Number field. In the example of Figure 1.3, a TCP peer
cannot indicate the correct reception of bytes 20 to 30 and 40 to 50 only using
the acknowledgement number. Modern TCP implementations therefore rely
on the Selective Acknowledgements (SACK) TCP option [RFC2018] in order
to indicate a discontinuous sequence of received data. Sadly, the restricted
size of the TCP options (40 bytes) makes it hard to encode large SACK blocks,
making TCP less efficient than a state-of-the-art SR-ARQ implementation.

1.3.2 Loss detection

The sender needs a mechanism to identify the packets lost in the network
and avoid retransmitting packets that have simply been delayed or reordered.
The sender can therefore not entirely rely on the gaps present in the received
acknowledgements as some of them could be caused by packet reordering as
illustrated in Figure 1.4. In this example, the second packet is reordered by
the network and is received after the third packet. Directly retransmitting the
second packet upon the reception of the ACK would trigger an unnecessary



14 Chapter 1. Background

Sender Receiver
Data([0..10])

Data([10..20])
Data([20..30])

Data([10..20])
Ack([0..10], [20..30])

Ack([0..30])
Ack([0..30])

Retransmission

Figure 1.4: Illustration of a spurious retransmission.

retransmission. This phenomenon is called spurious retransmission and causes
a waste of bandwidth as the retransmission could be avoided by waiting for
the acknowledgement of the reordered packet.

Over the years, the TCP protocol has been extended with several mech-
anisms to avoid spurious retransmissions, such as relying on duplicated
SACKs [RFC2883; RFC3708], Fast Retransmit [RFC5681; RFC6675] or more
recently Recent Acknowledgements (RACK) [RFC8985]. On modern TCP imple-
mentations, a transmitted packet will be deemed lost if at least one of these
conditions hold:

■ The retransmission timeout (RTO) for this specific packet has expired
without having received an acknowledgement for the packet. In current
Linux kernel versions, the minimum value for the TCP RTO is set to
200 milliseconds, nearly one order of magnitude larger than the typical
round trip time of modern Internet connections.

■ The packet is identified as lost following the RACK heuristic [RFC8985]:
packets with a newer sequence number have been acknowledged through
selective acknowledgements for more than one quarter of the connec-
tion round-trip time. This additional time is used to wait for reordered
packets to be acknowledged.

A lost packet will thus take more than one round-trip time to be detected
as such1. Packet losses will thus cause an additional latency that can be
detrimental for latency-sensitive applications running on TCP.

1It takes 5
4 ∗ 𝑅𝑇𝑇 in the best case when RACK is enabled.



1.3. Reliable data transfer 15

1.3.3 Congestion control

Due to the gain in popularity of computer networks and the rising number
of connected devices, the amount of exchanged data increased gradually.
This progressively augmented the pressure on the network routers and led
to the first congestion collapse in 1986 [Jac88]. During this phenomenon, the
connected devices repeatedly sent more data over the network than the amount
that could be handled by the routers, leading to an important increase of the
network delay due to the routers being overloaded. This in turn leads to a
high number of retransmissions from the TCP endpoints, a good part of them
being spurious as the network delay exceeded the protocol retransmission
timeout. This phenomenon can result in a drop of throughput of several
orders of magnitude as the traffic consists mostly in spurious retransmissions.
Congestion collapse led directly to the design of congestion control solutions
intended to avoid this phenomenon and improve the performance of transport
protocols on loaded networks [Jac88].

Congestion control algorithms are designed to be implemented on the
sending endpoint of transport protocols. The main principle is to lower the
data sending rate in reaction to a congestion signal from the network. Early
research contributions about congestion control called for making this signal
explicit by modifying the forwarded packets on the congested routers [JR88].
As these solutions required to update every router on the network, solutions
relying on an implicit congestion signal such as packet losses or network delay
increase were therefore preferred in practice [Jai86; Jac88]. Explicit Conges-
tion Notification (ECN) has however been proposed and standardized for IP
networks [RFC3168] but is still not globally deployed. Currently, congestion
control algorithms still mostly rely on implicit congestion signals to infer the
congestion state of the network.

The available congestion control algorithms are manifold. They vary in
the implicit congestion signals they use and the way they react to it. Most of
them keep track of a congestion window, limiting the bytes in flight, i.e. the
amount of bytes that can be transiting through the network at the same time.
New packets can be sent as long as the amount of bytes in flight is smaller
than the congestion window. When a packet gets acknowledged or is deemed
lost, its bytes are subtracted from the bytes in flight, freeing up some space for
new packets to be sent. The goal of a congestion control algorithm is to keep
the congestion window close to the bandwidth-delay product (BDP) of the link.
A congestion window larger than the BDP induces congestion on the network
while a congestion window smaller than the BDP under-utilizes the available
bandwidth. The different congestion control algorithms continuously update
the congestion window in reaction to the congestion state of the link inferred
by the congestion signals.



16 Chapter 1. Background

1.3.3.1 Loss-based congestion control

The first standardized congestion control mechanism [RFC5681] is based on
Van Jacobson’s work [Jac88] and uses packet loss as congestion signal under
the hypothesis that most packet losses are due to routers discarding packets
when congested. Its mode of operation can be decomposed in two phases:
slow start and congestion avoidance.

The slow start phase ensures starting the transfer with a low sending rate
in order to cope with low bandwidth networks. The transfer therefore starts
with a low initial congestion window2 and then doubles the window at every
round-trip time until the first packet loss is seen, after which the congestion
window is halved and the sender enters the congestion avoidance phase.
During congestion avoidance, the congestion window follows an additive
increase / multiplicative decrease pattern [JR88]. It is increased by one full
packet after every RTT without congestion. Upon a light congestion event
(receiving three duplicate acknowledgements consecutively), the congestion
window is halved while it is set to one packet upon a strong congestion event
(the packet retransmission timer has expired). This mechanism is often referred
as the New Reno congestion control, named after the BSD release it was first
implemented in. The Cubic loss-based congestion control algorithm [RX05;
HRX08], is used as the default congestion control algorithm in the Linux
kernel since 2006 [LinCub]. Its main difference with New Reno is its window
growth function during the congestion avoidance phase that follows a cubic
function whose inflection point (𝑤𝑚𝑎𝑥 ) is equal to or lower than the value of the
congestion window during the previous loss event. This ensures a slow window
increase around 𝑊𝑚𝑎𝑥 and a faster window increase once 𝑊𝑚𝑎𝑥 is passed
without loss event. The window growth of Cubic is also independent of the
RTT, allowing a faster bandwidth probing over long-delay links compared to
New Reno. Figure 1.5 illustrates the behaviour of New Reno and Cubic3 during
congestion avoidance under the presence of sporadic loss events represented
by dashed lines. First, we can see that the window increase of New Reno is
slower when the RTT is larger while Cubic is not affected by the RTT. Second,
we can observe that the window reduction upon loss event is lighter with
Cubic (30%) than New Reno (50%), providing a higher overall throughput for
Cubic.

The second part of the graphs shows that the congestion window of
loss-based congestion controls will collapse unnecessarily if the loss events
represented on the Figure are unrelated to network congestion. Loss-based
congestion controllers therefore perform badly over networks exposing a

2The recommended initial window size from RFC5687 is 3 packets. Nowadays, the Linux
kernel uses an initial congestion window of 10 packets.

3Cubic is configured with the recommended parameters proposed by [RFC8312bis].



1.3. Reliable data transfer 17

0

3k
w

in
do

w
[#

pk
ts

]
New Reno 50ms RTT
New Reno 25ms RTT

0 10 20 30 40 50 60 70 80 90 100
0

3k

time [s]

Cubic (any RTT)

Figure 1.5: Loss-based congestion control window evolution.

high percentage or congestion-unrelated losses [Hua+13]. While this was
uncommon when wired network access was predominant, non-congestion-
induced losses have become more frequent since wireless network accesses
gained in popularity.

1.3.3.2 BBR

Several congestion control algorithms have been designed to address this prob-
lem [AB18; Car+16a; Car+22]. Pushed by Google researchers in 2016 [Car+16a]
and integrated in the Linux kernel since release 4.9 [LinBBR], BBR is currently
the most notorious general-purpose congestion control mechanism that does
not entirely rely on packet loss to infer the state of the network. Instead of re-
acting to congestion signals once the network is congested, BBR continuously
adjusts its sending rate based on bandwidth estimations of the network. To
compute these estimations, the BBR sender regularly samples the data receive
rate by looking at the amount of acknowledged data over time. Most of the
time, the BBR sender is in a state where the sending rate exactly matches
the estimated bandwidth (Cruise). BBR then occasionally ensures to fill the
network pipe and attempts to increase the observed receive rate (Refill and
Probe Up). To this end, the sender inflates its sending rate to 1.25 times the
current bandwidth estimation. This state may increase the size of the bottle-
neck router queues by sending at a higher rate than the available bandwidth.
The sender thus finally lowers its sending rate below the estimated bandwidth
during a short period of time in order to empty any queue that the probing
phase has built on the routers (Probe Down). After that phase, the sender gets
back to its Cruise state with its new bandwidth estimate. Figure 1.6 illustrates
different states and behaviours of a BBRv2 sender after a sudden increase of
the available bandwidth. The dashed line represents the available bandwidth.



18 Chapter 1. Background

Cruise Refill and Probe Up Probe Down Cruise

time

ra
te

sending rate bw estimate available bw

Figure 1.6: Evolution of the BBR sending rate after an increase of the available

bandwidth.

The bw estimate is computed by the sender by observing the data receive rate
from the received acknowledgements. While totally ignored in its first version,
the second version of BBR reintroduces packet losses as a congestion signal in
its algorithms, although their effect on the sending rate remains minor while
the loss rate stays under 2% [Car+22].

1.3.4 Transport layer security

Having been designed forty years ago, TCP and UDP do not provide any
cryptographic security feature such as encryption and authentication. These
protocols are therefore vulnerable to communication eavesdropping and mes-
sage forgery, exposing the applications to attackers on the Internet. To prevent
these attacks and make TCP and UDP usable publicly, security solutions have
been developed on top of these transport protocols to encrypt and authenticate
the application payloads they carry. This is the purpose of the Transport Layer
Security (TLS) protocol [RFC8446]. TLS allows two endpoints to negotiate
cryptographic material (algorithms and keys) and encrypt and authenticate
the application payload by encapsulating it inside TLS records. The encrypted
TLS records are then sent over the TCP connection. By doing so, no attacker
can access nor modify the application payload exchanged over the network.
However, as TLS exclusively protects the application payload, the TCP header
is neither encrypted nor authenticated and can still be altered by any interme-
diate on the network.

1.4 The QUIC protocol

First presented in 2013 [QUICBlog], the QUIC protocol has been designed to
provide a modern transport protocol with improved performance and security
features, with a focus on HTTP [RFC9000; RFC9114].

Started as an evolution of SPDY [Bel+], the precursor of HTTP/2 [RFC9113],
QUIC combines in a single protocol the mechanisms usually found in TCP, TLS



1.4. The QUIC protocol 19

and HTTP/2. In contrast with TLS/TCP, QUIC encrypts most of the protocol
control information in addition to the application payload to prevent pervasive
monitoring and interferences from on-path attackers. Since it is built over
UDP, QUIC is easier to update than TCP. Indeed, QUIC implementations can
be included as libraries inside applications that are regularly updated and do
not need support from the operating system outside access to UDP sockets.

Given the positive results obtained by Google with QUIC [Lan+17], the
IETF created a dedicated working group in 2016 to standardize the protocol
starting from Google’s initial design [IT16]. Measurements studies show that
a growing number of servers now support QUIC [Rüt+18; Kos+22; QUICDNS]
but also that the QUIC traffic grows [Lan+17; Tre+18], with studies showing
more than 65% of HTTP requests in Belgium being performed with QUIC as
of writing this thesis [Lab; Geo].

One of the strengths of the QUIC protocol is its extensibility. A QUIC
packet payload contains a sequence of frames, each one being handled inde-
pendently by the protocol. The STREAM frame transports application data.
The ACK frame acknowledges the received packets to the sender. New types
of frames can easily be added to the protocol.

Released and standardized more than thirty years after TCP, QUIC inherits
from decades of experience and improvements of older transport protocols.
As QUIC is the foundation this thesis builds upon, this section goes through
several QUIC features and highlights how it differs from classical transport
protocols such as TCP.

1.4.1 Reduced and secure connection establishment

Before actually exchanging application payload on the internet, connection-
oriented transport protocols generally want to ensure a series of properties
for the connection. For secured communications using TLS, cryptographic
material must be exchanged by the endpoints to agree on encryption algo-
rithms and keys. QUIC endpoints also need to ensure they run compatible
protocol versions and understand each other’s protocol extensions (e.g. QUIC
datagrams). Finally, being publicly reachable, the server may first want to
ensure that the client actually owns its IP address and is not performing an
attack by spoofing the IP address of someone else. All these properties are
performed during the protocol handshake that takes place at the connection
startup. Unsuccessful handshakes will prevent the connection establishment.
The TCP handshake requires one round-trip time to complete. For negotiating
the cryptographic keys and algorithms, the version 1.3 of TLS requires an
additional round-trip. This implies that applications using TCP+TLS have to
wait for two full round-trip times before their payload can actually be sent.
The TCP Fast Open (TFO) extension allows sending application data before



20 Chapter 1. Background

the TCP handshake is completed [RFC7413]. TLS 1.3 also permits sending
data before the completion of the cryptographic handshake by using the early
data mechanism: TLS endpoints can exchange cryptographic material over a
session that will be used afterwards to send application data over subsequent
sessions before the completion of the TLS handshake.

On its side, QUIC integrates TLS as part of its design and performs both
transport and TLS handshakes at the same time in one round-trip, halving
the time required for the connection establishment [RFC9001]. Finally, QUIC
allows 0-RTT connection establishment using the TLS early data mechanism.
0-RTT connection establishment is already supported by most QUIC imple-
mentations while TCP fast open still struggles to be widely deployed [Paa16].
This makes QUIC connection establishment significantly faster than TCP in
general.

1.4.2 The QUIC packet

The QUIC protocol is built atop UDP. This means that QUIC packets are placed
in the payload of UDP packets. The advantage is twofold. First, UDP packets
can be sent by any unprivileged application on common operating systems
such as Linux. This means that implementing and running the QUIC protocol
requires neither kernel modifications nor specific privileges on the system.
Second, having existed for more than forty years and being the favoured
transport protocol for real-time media communication, the UDP protocol has
proven itself to traverse the Internet without issue. A new protocol developed
directly on top of IP would have to pass through many kinds of network nodes
called middleboxes, some of them being known to drop packets containing
unknown protocols or protocol options. Building QUIC atop UDP allows
passing through most middleboxes that already allow UDP traffic.

1.4.2.1 QUIC packet format

There are two kinds of QUIC packet headers: the long header and the short
header [RFC9000]. While the long header is only used for the first few packets
exchanged for connection establishment, the short header is used for most of
the connection lifetime. The short header packet format for the version 1 of
QUIC is depicted in Figure 1.7. It contains significantly fewer fields than the
TCP header. This is because QUIC encodes most of its control information
inside frames that are part of the QUIC encrypted payload. The first bit (H)
indicates the header type (1 for long, 0 for short). The second bit (Q) is always
set to 1, allowing quickly identifying non-QUIC packets. The third bit (S) is
the Spin bit. This bit varies once per round-trip, allowing the network nodes
to passively measure the RTT of QUIC connections. The Rsv bits are currently
reserved. K is used to determine the cryptographic context used to encrypt



1.4. The QUIC protocol 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

H Q S Rsv K Pnl
Destination Connection ID

[0..160]
Packet Number (8/16/24/32)


Header

Encrypted Payload (sequence of QUIC frames)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 1.7: QUIC short header packet format.

the packet. Pnl is used to indicate the length of the Packet Number field: 8, 16,
24 or 32 bits.

The Destination Connection ID is used to uniquely identify the QUIC con-
nection this packet belongs to. To do so, TCP and UDP both only rely on the
(𝐼𝑃𝑠𝑟𝑐 , 𝐼𝑃𝑑𝑠𝑡 , 𝑃𝑜𝑟𝑡𝑠𝑟𝑐 , 𝑃𝑜𝑟𝑡𝑑𝑠𝑡 ) 4-tuple. Connection IDs add one level of multi-
plexing, allowing several QUIC connections to run on the same 4-tuple when
the connection ID length is not zero.

The Packet Number field contains the least significant bits of the 62-bits
packet number. The packet number uniquely identifies a QUIC packet in a
QUIC connection. Two different QUIC packets cannot have the same packet
number. The Packet number is monotonically increasing: it increases by at
least one for each newly sent packet, ordering the packets by the time they
were sent. QUIC packets are never retransmitted as is. If the content of a
QUIC packet needs retransmission, this content is placed in a new packet with
a dedicated packet number.

The remaining part of the QUIC short header packet is the Encrypted
Payload and spans the remaining UDP payload. The QUIC payload is encrypted
and authenticated, ensuring end-to-end integrity and confidentiality of the data
it contains. This prevents any inspection or modification of the packet payload
by attackers or network middleboxes. Aside from the security guarantees it
provides, it also mitigates the ossification problem plaguing the extensibility of
cleartext protocols on the Internet such as TCP [Hon+11; Rai+12; ED19], where
middleboxes drop packets with unknown TCP extensions of modifications.
Unlike TCP and UDP payloads that directly contain application data, the
decrypted QUIC payload consists in a sequence of QUIC frames.



22 Chapter 1. Background

Sender Receiver
TCP(text, seq=[0..10])

TCP(text, seq=[0..10])

TCP(img, seq=[10..210])

Retransmission Deliver text
and img

to application

Figure 1.8: Head-of-line blocking on a TCP connection.

Sender Receiver
QUIC#1(Stream{id=1, seq=[0..10], text})

QUIC#3(Stream{id=1, seq=[0..10], text})

QUIC#2(Stream{id=5, seq=[0..200], img})

Retransmission

Deliver img
on stream 5
Deliver text
on stream 1

Figure 1.9: No head-of-line blocking with QUIC stream multiplexing.

1.4.3 Stream multiplexing: avoiding head-of-line blocking

The most important feature included in QUIC is stream multiplexing. As
illustrated previously, QUIC allows applications to communicate using several
reliable bidirectional streams concurrently, whereas TCP only offers a single
stream per connection. While this has no effect on the amount of data that
can be exchanged over the connection, stream multiplexing addresses the
problem of head-of-line blocking occurring upon packet losses when several
independent objects are sent over the same connection. Figure 1.8 shows
an example of head-of-line blocking with TCP when sending a text and an
image subsequently over the same connection. As TCP guarantees an in-order
reliable delivery of the bytestream, any packet loss concerning the text will
prevent the subsequent image from being delivered to the application, even
if all the bytes of the image have been successfully received. Delivering the
image bytes before the text would break TCP’s reliability guarantees. The
only way to process the text and image independently using TCP is to use
separate TCP connections. Using QUIC, independent data can be transmitted
through separate streams over a single connection as shown in Figure 1.9. In
this example, the text is transmitted over stream 1 and the image over stream
5. Each stream is guaranteed to be delivered reliably and in-order, so the lost
text data will be retransmitted in a new packet (#3). However, packet losses
concerning the text do not prevent the image from being delivered as both
objects are sent independently on separate streams.



1.4. The QUIC protocol 23

Sender Receiver
QUIC#1(Stream{id=1, seq=[0..5], "hello", FIN=false})
QUIC#2(Stream{id=1, seq=[5..10], "world", FIN=true})
QUIC#4(Stream{id=5, seq=[0..7], "bonjour", FIN=false})

QUIC#1(Ack{[1, 2], [4]}, Max_data{seq=50})

Figure 1.10: Two QUIC endpoints exchanging packets and frames.

1.4.3.1 Frames: control information as part of the encrypted payload

Frames are structured units of control information exchanged by QUIC peers.
They are carried inside QUIC packets and serve many purposes. They are
encoded in a type-value fashion in the encrypted payload. Their format and
purpose differ based on the frame type. Here is a list of QUIC frames that are
of interest for this thesis.

■ STREAM frame. The STREAM frames carry the application data sent
over QUIC streams. In addition to the application payload, they encode
several control fields, such as the stream byte offset of the data they
carry (similarly to the TCP sequence number), the ID of the concerned
QUIC stream and the FIN flag, indicating that the carried data are the
last of the byte stream in that direction. Several STREAM frames can
be carried in the same QUIC packet in order to transmit data of several
streams in the same packet when needed. Alike TCP, application data
transiting through streams are delivered in-order and reliably to the
receiving application.

■ DATAGRAM frame. Not part of the base QUIC specification, DATA-
GRAM frames are proposed as a QUIC extension [RFC9221]. They allow
applications to send datagrams over a QUIC connection. Similarly to the
API offered by UDP sockets, the datagrams are sent in a best-effort man-
ner: they can be lost, delayed and re-ordered. Unlike UDP datagrams,
the datagrams sent over a QUIC connection are subject to congestion
control. When a connection is limited by the congestion control, the
DATAGRAM frames will either be delayed or dropped by the QUIC
implementation.

■ MAX_DATA and MAX_STREAM_DATA frames. These frames
indicate the maximum amount of bytes that can be sent either on a
specific stream (MAX_STREAM_DATA) or over the whole connection



24 Chapter 1. Background

(MAX_DATA). This implements a flow control mechanism similar to
TCP’s receive window.

■ PADDING frame. This frame can be added to QUIC packets to increase
its size. PADDING frames do not require specific action when processed
by the receiver.

■ CONNECTION_CLOSE frame. This frame is sent by an endpoint to
close the QUIC connection.

■ ACK frame. The ACK frames are sent by a QUIC receiver to indicate the
packets that were successfully received. Similarly to the TCP SACK op-
tion, QUIC ACK frames allow performing selective acknowledgements
indicating precisely the packet numbers having been received over the
network. Packets that contain other frames than ACK, PADDING or
CONNECTION_CLOSE frames are considered to be ack-eliciting. Upon
reception of an ack-eliciting packet, the receiver must acknowledge it
by sending an ACK frame within a short delay.

QUIC frames form a natural way of extending the protocol: new protocol
behaviours can be implemented by defining new frames.

Figure 1.10 illustrates the packets exchanged on an open connection with
a sender transmitting “helloworld” over stream 1 and “bonjour” over stream 5.
In this example, the sender deliberately sends this data using three STREAM
frames, each one being carried by a different QUIC packet. By correctly setting
the FIN flag, the sender indicates that it won’t send any more bytes over stream
1 but may still send new data over stream 5. The sender chooses to never send
a packet with packet number 3, which is a valid behaviour for QUIC endpoints.
On its side, the QUIC receiver selectively acknowledges packets #1, #2 and #4
by sending an ACK frame. It also informs the sender that it currently won’t
accept more than 50 stream bytes over the whole connection. Having already
sent 17 bytes, the sender can still send 33 stream bytes before being blocked
by the QUIC flow control mechanism.

1.4.4 QUIC loss recovery

Alike TCP, QUIC offers a reliable bytestream service. It must ensure the
correct delivery of the streams data in presence of packet losses. For the
same reasons as TCP, it also implements a congestion control mechanism for
which packet loss can be a crucial signal. A key difference between QUIC
and TCP is that QUIC packet numbers are never reused during a connection.
Lost QUIC packets are never retransmitted as is. The content that needs
to be retransmitted is placed inside new frames contained in a new QUIC
packet with a new packet number. This avoids the ambiguities present in



1.4. The QUIC protocol 25

TCP acknowledgements in which it is impossible to distinguish the loss of
a packet from the loss of its retransmission only relying on the sequence
number [RFC7323; RFC9002].

1.4.4.1 Loss detection

Inspired by the TCP RACK-TLP mechanism [RFC8985], QUIC implements an
acknowledgement-based and a probe timeout (PTO) loss detection mechanisms.
Using the acknowledgement-based loss detection, a QUIC packet with packet
number 𝑥 is deemed as lost when any of the following conditions is met :

■ A packet with number 𝑦 ≥ 𝑥 + 𝑘𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑4 has been ac-
knowledged.

■ A more recent packet than 𝑥 has already been acknowledged and 𝑥 has
been sent for more than 9

8 ∗ 𝑅𝑇𝑇
5

Once a packet is marked as lost by the loss detection mechanism, the
content of its STREAM frames is retransmitted in a new QUIC packet to
ensure the reliability guarantee of the QUIC streams.

The acknowledgement-based strategy can mark a packet as lost only when
more recent packets have been acknowledged. This means that it cannot
detect the loss of the last packets of the flight. The probe timeout mechanism
is used to trigger the sending of acknowledgements by sending new packets.
If the probe timeout (PTO) expires without new packets being acknowledged,
the QUIC sender sends one or two new QUIC ack-eliciting packets containing
new stream data if available. These packets will trigger the sending of new
ACK frames from the peer, allowing to detect the potentially lost packets using
the acknowledgement-based strategy. The firing of the PTO in itself does
not mark any packet as lost. The PTO can be computed using the following
formula:

𝑃𝑇𝑂 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑_𝑟𝑡𝑡 + 4 ∗ 𝑟𝑡𝑡𝑣𝑎𝑟 +𝑚𝑎𝑥_𝑎𝑐𝑘_𝑑𝑒𝑙𝑎𝑦 (1.1)

where 𝑠𝑚𝑜𝑜𝑡ℎ_𝑟𝑡𝑡 is an estimation of the connection round-trip time, 𝑟𝑡𝑡𝑣𝑎𝑟
is the mean RTT variation and 𝑚𝑎𝑥_𝑎𝑐𝑘_𝑑𝑒𝑙𝑎𝑦 is the maximum amount of
time a receiver waits before sending an acknowledgement upon reception of
an ack-eliciting packet.

With its acknowledgement-based and probe timeout strategies, the QUIC
loss detection mechanism needs at least one RTT to mark lost packets and

4The recommended initial value for 𝑘𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is 3 [RFC9002].
5This value is the recommended time threshold from [RFC9002] but can be changed. The

original RACK-TLP recommendation for TCP was to wait for 5
4 ∗ 𝑅𝑇𝑇 [RFC8985].



26 Chapter 1. Background

trigger retransmissions. Only relying on retransmissions after loss may be
insufficient for latency-sensitive applications that cannot afford to wait for an
additional RTT to recover from losses. For this reason, this thesis considers
extending QUIC’s loss recovery mechanism using Forward Erasure Correction.

1.4.5 A broad class of applications

While the first application built atop QUIC is HTTP/3 [RFC9114], several clas-
sical protocols originally running over UDP or TCP have also been updated to
use QUIC, such as DNS [RFC9250], WebSocket [RFC9220] and RTP [PO18],
with DNS being already successfully deployed on the Internet [Kos+22].
Recently, the DNS resolver on Android devices was updated to use QUIC
as well [QUICDNS]. The new WebTransport protocol aims at providing
the different QUIC services over HTTP to web applications running in the
browser [FKV23]. The MOQT protocol uses WebTransport in its turn to convey
live media traffic over QUIC in the browser [Cur+23]. While these different
use-cases would previously have been using either TCP or UDP based on their
requirements, thanks to its multi-stream and datagram capabilities, built-in
end-to-end encryption and easy extensibility, the QUIC protocol is general
enough to welcome different use-cases with contrasting needs.

1.5 Forward Erasure Correction

Relying uniquely on retransmissions alike TCP might be insufficient for QUIC
to provide suitable performance for latency-sensitive applications due to the
added delay. Over high latency network configurations, the retransmitted data
might arrive too late at the receiver to be considered useful by the application.
In the case of video-conferencing applications, a late video frame can cause a
stalling of the video playback, alter the picture and deteriorate user experi-
ence. The Forward Erasure Correction (FEC) loss recovery mechanism aims
at sending the redundant information necessary for the receiver to recover
the lost network packets without the need to wait for retransmissions. The
simplest form of Forward Erasure Correction is to duplicate every sent packet
(“opportunistic retransmissions”) to be able to recover from the loss of any of
them. Duplicating every packet doubles the needed bandwidth for the transfer,
increasing considerably the load on the network. Several techniques based on
information coding theory have been developed and proposed to reduce the
load while providing more robust loss recovery capabilities than pure packet
duplication.

This section starts by introducing the coding theory concepts required
to fully understand the techniques leveraged in this work. It then gives an
overview of the different FEC techniques applied in this thesis.



1.5. Forward Erasure Correction 27

𝑆1𝑆2 00 01 10 11
𝐶1𝐶2𝐶3 110 101 011 000

Table 1.1: Example erasure correcting code with two binary source symbols

1.5.1 Coding theory primer

An erasure correction code efficiently encodes a message adding redundant
information in order to decode the original message even if parts of the coded
message have been erased (lost) by the network. Table 1.1 shows an example
of a simple erasure correcting code with an original message composed of
two binary source symbols and a coded message composed of three binary
coded symbols. Sending the coded message instead of the original message
has the advantage that the original message can be recovered even when one
of the coded symbols gets erased by the network as soon as the receiver knows
which symbols were received and erased. Let us take an example where a host
receives the message “1∅1” where ∅ represents a symbol erasure, meaning
that the second symbol is never received. By looking at the code defined
in Table 1.1 the host can determine that the only coded message that could
have possibly been sent is the message 101, allowing it to decode the received
message back to the original message (01). In this thesis, we focus on two
kinds of erasure correction codes: block codes and fountain codes.

1.5.1.1 Block codes and Reed-Solomon

Block codes are a popular family of erasure correcting codes. A (𝑛, 𝑘) block
code takes as input a message composed of 𝑘 source symbols 𝑆1, ..., 𝑆𝑘 and
generates a coded message composed of 𝑛 coded symbols 𝐶1, ...,𝐶𝑛 (𝑘 ≤ 𝑛)
such that the original message can be recomputed from the coded message
even if a subset of the coded symbols is missing. We define the code rate as
𝑘
𝑛

, the ratio between the amount of source and coded symbols. The lower
the code rate, the more redundancy is added. The code in Table 1.1 seen
previously is an example of a (3, 2) block code. This erasure correcting code
has the nice property of being a Maximum Distance Separable (MDS) code: the
minimum Hamming distance between any pair of coded messages is equal
to 𝑛 − 𝑘 + 1 (= 2). This property implies that the original message can be
decoded as soon as any 𝑘 of the 𝑛 coded symbols are received. The code of
Table 1.1 is pre-computed for every possible message of two binary digits. The
Reed-Solomon block erasure correcting code provides an algorithm to generate
an arbitrary number 𝑛 of coded symbols for any message composed of 𝑘 source
symbols [RS60].

The Reed-Solomon erasure correcting code is an MDS code based on the



28 Chapter 1. Background

mathematical property that for any polynomial of degree 𝑘 − 1 as follows :

𝑃 (𝑥) = 𝑎𝑘𝑥
𝑘−1 + ... + 𝑎1,

the 𝑎𝑖 coefficients can all be retrieved from any set S of 𝑘 points like the
following :

S = {(𝑥1, 𝑃 (𝑥1)), ..., (𝑥𝑘 , 𝑃 (𝑥𝑘 )) | 𝑥1 ≠ ... ≠ 𝑥𝑘 }.

Based on that property, the Reed-Solomon error correcting code defines
a polynomial for any message of length 𝑘 by using its 𝑘 source symbols as
coefficients for the polynomial. For instance, to protect a message composed
of 𝑘 source symbols𝑚 = (𝑆1, ..., 𝑆𝑘 ), a (𝑛, 𝑘) Reed-Solomon encoder builds the
following polynomial :

𝑃 (𝑥) = 𝑆𝑘𝑥
𝑘−1 + ... + 𝑆1

and evaluates it for 𝑛 arbitrary values 𝑣𝑖 . The result is a coded message
composed of 𝑛 coded symbols 𝑐 = (𝐶1, ...,𝐶𝑛) = (𝑃 (𝑣1), ..., 𝑃 (𝑣𝑛)) that is sent
to the decoder. The original source symbols can therefore be received as soon
as 𝑘 out of the 𝑛 coded symbols are received by the decoder. The encoding
procedure can be written as the following dot product implying a Vandermonde
matrix : 

1 𝑣1 𝑣2
1 . . . 𝑣𝑘−1

1
...

...
...

...
...

1 𝑣𝑘 𝑣2
𝑘

. . . 𝑣𝑘−1
𝑘

...
...

...
...

...

1 𝑣𝑛 𝑣2
𝑛 . . . 𝑣𝑘−1

𝑛


·

𝑆1
...

𝑆𝑘

 =


𝐶1
...

𝐶𝑘

...

𝐶𝑛


, (1.2)

which can be rewritten
𝑉 ·𝑚 = 𝑐. (1.3)

This allows the encoding procedure to be implemented as a matrix product.
For the decoding procedure, the decoder takes 𝑘 received coded symbols and
constructs a variant of Equation 1.2 keeping only the matrix rows related to
the 𝑘 received 𝐶𝑖 ’s, resulting in a 𝑘 × 𝑘 Vandermonde matrix. The decoding
procedure can then be implemented as a matrix inversion or linear system
solving problem. This class of problems can be solved if and only if the
matrix determinant is nonzero. For Vandermonde matrices, this is guaranteed
to be the case when the 𝑣𝑖 ’s are all different [Mil]. Choosing distinct 𝑣𝑖 ’s
therefore ensures the recoverability of any Reed-Solomon block. For practical
and computational reasons, Reed-Solomon erasure correcting codes generally
operate over 𝐺𝐹 (2𝑞) Galois Fields [Mor12] and the 𝑣𝑖 arbitrary values are



1.5. Forward Erasure Correction 29

chosen to be {1, 𝛼, 𝛼2, ..., 𝛼𝑛−1} with alpha being one of the root values of the
underlying Galois Field.

One of the drawbacks of block codes such as Reed-Solomon is that source
symbols cannot be added easily to the encoder without having an effect on
the whole encoding process: in Equation 1.2, adding a new source symbol
𝑆𝑘+1 affects the values of 𝐶1, ..,𝐶𝑘 . A second drawback is the number of coded
symbols that can be generated by Reed-Solomon in practice. Efficient imple-
mentations generally encode the Vandermonde matrix entries using 8-bits
values. As the 𝑣𝑖 ’s must all be distinct, this limits 𝑛 to 256.

1.5.1.2 Fountain codes and Random Linear Network Coding

The family of fountain codes remove these block codes limitations, being
able to produce an arbitrarily large number of coded symbols from a set of
source symbols. The coded symbols can also be generated on the fly, without
any fixed code rate. This is why they are also called rateless codes. Being
introduced with Tornado [Bye+98] and significantly improved with LT codes in
the early 2002’s [Lub02], fountain codes became popular with the introduction
of Raptor codes [Sho06] providing a linear time decoding algorithm that was
also practical for network applications (see Section 1.5.1.3).

Random Linear Network Coding (RLNC or RLC) [Ho+03] provides a nat-
ural way to generate coded symbols in a rateless manner. A coded symbol
𝐶 protecting a set of 𝑘 source symbols 𝑆1, ..., 𝑆𝑘 is generated as their linear
combination using randomly generated coefficients as follows :

𝐶 = 𝑐1𝑆1 + ... + 𝑐𝑘𝑆𝑘 ,

with every 𝑐𝑖 being selected randomly or using a pseudo-random number
generator. New coded symbols can be created by generating new random
coefficients. To be loss-resilient, the RLC encoder generates and transmits
more than 𝑘 symbols to ensure that at least 𝑘 symbols are received on-time.
Upon receiving the coded symbols 𝐶1, ...,𝐶𝑘 , the decoding procedure can be
implemented by solving the following system of linear equations with 𝑆1, ..., 𝑆𝑘
as the system unknowns :


𝑐11𝑆1 + 𝑐12𝑆2 + · · · + 𝑐1𝑘𝑆𝑘 = 𝐶1

𝑐21𝑆1 + 𝑐22𝑆2 + · · · + 𝑐2𝑘𝑆𝑘 = 𝐶2
...

𝑐𝑘1𝑆1 + 𝑐𝑘2𝑆2 + · · · + 𝑐𝑘𝑘𝑆𝑘 = 𝐶𝑘

, (1.4)



30 Chapter 1. Background

Classical
encoder

S1 S2 Sk

C1 C2 Cn

... ...

... ...

Systematic
encoder

S1 S2 Sk

S1 Sk R1 Rn-k

...

Figure 1.11: Classical encoder versus systematic encoder. 𝑆1, ..., 𝑆𝑘 can be pro-

cessed directly upon reception and 𝑅1, ..., 𝑅𝑛−𝑘 can be ignored by the receiver

if no loss occurred.

which can be rewritten as the following dot product :
𝑐11 𝑐12 . . . 𝑐1𝑘
𝑐21 𝑐22 . . . 𝑐2𝑘
...

...
. . .

...

𝑐𝑘1 𝑐𝑘2 . . . 𝑐𝑘𝑘


·


𝑆1
𝑆2
...

𝑆𝑘


=


𝐶1
𝐶2
...

𝐶𝑘


. (1.5)

The system can be solved if the matrix is full rank, i.e. it contains no pair
of linearly dependent rows. The coefficients 𝑐𝑖 𝑗 being drawn at random, the
rows only have a small probability of being linearly dependent. In the case
the matrix is not full rank, the decoder will have to receive new equations to
decode the source symbols. The system solving can easily be implemented
using Gaussian elimination.

1.5.1.3 Systematic codes

The techniques presented until now generate coded symbols that are sent in
place of the original source symbols, the latter being retrieved once at least 𝑘
coded symbols are successfully received. Having to wait for the reception of 𝑘
coded symbols before being able to decode the source symbols is impractical for
latency-sensitive applications needing to process the data as soon as possible.
Fortunately, most erasure correction techniques can be implemented in a
systematic way, in which the sent symbols can be separated into two parts,
the first part being the 𝑘 unmodified source symbols and the second part
being the remaining repair symbols. Figure 1.11 compares the symbols sent
on the network by a classical and a systematic encoder. Using the sytematic
encoder, the source symbols 𝑆1, ..., 𝑆𝑘 can be processed by the receiver as soon
as they are received from the network. The repair symbols 𝑅1, ..., 𝑅𝑘 are only
used to recover the missing source symbols if losses occur in the network. If
no loss occurs, the repair symbols can simply be ignored and no decoding
operation takes place. In addition to being able to directly process the received
source symbols, systematic codes drastically reduce the number of decoding



1.5. Forward Erasure Correction 31

operations, making the FEC decoder drastically less CPU intensive when loss
events are uncommon. A straightforward example of systematic code consists
in generating a repair symbol as the result of the bytewise XOR over all the
source symbols. The repair symbol can then be used to recompute a single
missing source symbol by XORing the repair symbol with the 𝑘 − 1 received
source symbols.

The Reed-Solomon encoder can be rewritten in an equivalent systematic
encoder. Concerning fountain codes, while LT codes are not systematic, Raptor
codes can be implemented with a systematic encoder, explaining its popularity
among fountain codes. Finally, RLC naturally provides a systematic encoder
by transmitting the source symbols and sending the repair symbols as random
linear combinations of the source symbols. The unknowns of the system
to solve are only the lost source symbols. This thesis focuses on systematic
erasure correcting codes for every proposed solution.

1.5.2 Protecting network packets

The erasure correcting codes we just described take as input a message𝑚 that
is a set of 𝑘 source symbols. In the example illustrated in Table 1.1, the source
symbols are binary digits, making the erasure correcting codes operating at the
bit level. Transport protocols commonly encounter packet erasures but rarely
see bit erasures during the transfer. When congested, the network routers drop
entire packets, not parts of them. When packets are partially corrupted by the
network or physical medium imperfections, the checksums of UDP and TCP
and the cryptographic authentication tag of QUIC make the whole packet to
be considered as invalid and entirely ignored by the receiver. In this thesis we
perform packet-level protection, meaning that the source symbols are entire
packets payloads. This can be done without loss of generality or modification
in any of the presented erasure correcting codes as packet payloads being
a sequence of bytes, they can be considered as large numbers. To perform
efficient mathematical operations on the packets, the erasure correcting codes
are implemented using Galois Field operations in the 𝐺𝐹 (28) finite field. In
this field, the addition and subtraction between two packet payloads are both
implemented as their bytewise XOR operation and the multiplication and
division are based on pre-computed tables.

1.5.3 Mode of operation

FEC encoders can operate in block and in convolutional (or sliding window)
modes. In block mode, the source symbols are grouped in separate and inde-
pendent blocks with repair symbols being generated to protect each block.
This behaviour is illustrated at the left of Figure 1.12. In this example, the



32 Chapter 1. Background

Sender Receiver
S1

S2

S3

S4

S5

R2

R1

S6

Recover S4
and S5

S1 S2 S3 S4 S5 S6

Generate R1 and R2

Block mode.

Sender Receiver
S1

S2

S3

S4

S5

R2

R1

S6

Recover S5

Recover S4

S1 S2 S3 S4 S5 S6

Generate R1

Generate R2

Convolutional mode.

Figure 1.12: In blockmode, the receiver has towait for both𝑅1 and𝑅2 to recover
𝑆4. In convolutional mode, 𝑆4 can be recovered as soon as 𝑅1 is received.

source symbols 𝑆1, ..., 𝑆6 form a block with the repair symbols 𝑅1 and 𝑅2 specif-
ically protecting this block. After generating 𝑅1 and 𝑅2, new source symbols
will be placed into a new separate block that will be protected by its own
repair symbols. Block erasure correcting codes such as Reed-Solomon can
only be used in block mode.

In convolutional mode, the sender maintains a window of protected source
symbols and periodically generates repair symbols protecting the current
window. The repair symbols of different windows can then be mixed together
to recover the lost symbols. The right side of Figure 1.12 illustrates the convo-
lutional mode of RLC. The repair symbols 𝑅1 and 𝑅2 are generated following
the classical RLC procedure :{

𝑐11𝑆1 + 𝑐12𝑆2 + 𝑐13𝑆3 + 𝑐14𝑆4 = 𝑅1

𝑐21𝑆3 + 𝑐22𝑆4 + 𝑐23𝑆5 + 𝑐24𝑆6 = 𝑅2
(1.6)

with 𝑐𝑖 𝑗 the randomly generated coefficients. In the example of Figure 1.12,
only the symbols 𝑆4 and 𝑆5 are missing. The equations can thus be reduced like
the following, forming a system using both symbols from different windows :{

𝑐14𝑆4 = 𝑅1 − 𝑐11𝑆1 − 𝑐12𝑆2 − 𝑐13𝑆3

𝑐22𝑆4 + 𝑐23𝑆5 = 𝑅2 − 𝑐21𝑆3 − 𝑐24𝑆6
(1.7)



1.5. Forward Erasure Correction 33

with 𝑆4 and 𝑆5 the only two unknowns of the system. This capability of mixing
repair symbols allows RLC to be used in convolutional mode. With the example
of Figure 1.12, 𝑆4 can be recovered sooner using convolutional mode than with
block mode as only 𝑅1 needs to be received to recover 𝑆4.

Roca et al. compare block and convolutional codes using Reed-Solomon
and Random Linear Codes (RLC) to represent both families of codes [Roc+17].
They show that while the Reed-Solomon block codes provide a higher encoding
speed, RLC allows recovering the packets with a reduced latency compared to
Reed-Solomon. In this thesis, we focus on Reed-Solomon for block mode and
RLC for convolutional mode.

Mathematical conventions We define a (𝑛, 𝑘) block code as a code sending
a block of 𝑘 source symbols followed by 𝑛 − 𝑘 repair symbols. We define a
(𝑛, 𝑘, 𝑐) convolutional code as a convolutional code sending𝑛−𝑘 repair symbols
every 𝑘 source symbols. The repair symbols protect the 𝑐 previous source
symbols. The left side of Figure 1.12 shows an example of a (6, 4) code. The
right side of Figure 1.12 shows an example of a (3, 2, 4) convolutional code.

1.5.4 FEC as a transport loss recovery mechanism

General-purpose reliable transport protocols such as TCP and QUIC essentially
rely on SR-ARQ to recover from loss events. While FEC has already been tuned
for specific link-layer technologies [Bie93; Kat+08; Gie+18], many existing
works have considered using FEC for TCP [Hui97; LK04; Sun+11; BLK04;
Fer+18; Cui+14; Clo+13]. However, these solutions were either deployed as a
tunnel below TCP or implemented in a simulated environment. Indeed, using
FEC as the loss recovery mechanism for TCP faces several obstacles. First, TCP
is generally implemented in the kernel of operating systems, making it hard to
deploy complex and resource consuming systems such as FEC as part of the OS.
Second, the extensibility of TCP is limited due to both its small option space
and ossification problem [Rai+12]. QUIC does not suffer from any of these
problems. First, almost all its control information is encrypted, making it easy
to deploy new protocol features without middlebox interference. Second, the
design of QUIC allows to easily implement new protocol behaviour through
the use of QUIC frames that can span entire QUIC packets, whereas TCP
options are limited to 40 bytes.

This is why FEC was originally considered as part of the QUIC protocol
in early prototypes [Ros12]. It has however rapidly been dropped due to
negative experimental results [Lan+17; Swe17]. The experiments were using a
simple XOR-based erasure correction code, making it only possible for QUIC
to recover from single packet losses, while the authors encountered more than
70% of loss events implying two or more packets. Finally, the only evaluated



34 Chapter 1. Background

use-cases were web search and video-on-demand. In this thesis, we start
from these early conclusion and entirely revisit the use of FEC as part of
the QUIC loss recovery mechanism. We implement, integrate and compare
powerful erasure correcting codes inside the QUIC loss recovery mechanism in
Chapter 2. Based on the findings of this chapter, we provide a short discussion
on the interaction of FEC and congestion control in Chapter 3. We imagine new
ways to extend a transport protocol in Chapter 4 and use it to adapt the loss
recovery behaviour to the application and network conditions in Chapter 5. We
study the characteristics of a lossy wireless network in Chapter 6 to evaluate
to which extend FEC can be beneficial in real networks. We finally apply our
techniques on popular network applications on this network and show that
we can obtain actual performance improvements for real applications on real
networks in Chapter 7.



QUIC-FEC: A general loss

recovery QUIC extension 2

In this chapter, we design, implement and evaluate a first FEC extension to
QUIC. This extension is mainly intended for high-delays and lossy communi-
cations such as In-Flight Communications services where losses are frequent
and retransmissions impact user experience [Rul+18].

We propose three main contributions in this chapter. First, a modular QUIC
extension that enables the use of a variety of FEC techniques. Our extension
already goes beyond the experiments carried out by Google with a simple
FEC technique in Chrome [Lan+17; Swe17]. Furthermore, our design makes
the congestion control aware of packets that were either normally received
or recovered by FEC. Second, we provide a complete implementation of the
proposed extension in quic-go [al22] with three different FEC techniques.
Third, our evaluation, over a wide range of parameters, indicates that the
proposed FEC techniques improve the performance of QUIC for short file
transfers.

This chapter is organised as follows. We first discuss the support of FEC
within QUIC in Section 2.1. We then define in Section 2.2 the design and
implementation details of QUIC-FEC, our extension enabling the use of FEC-
protected transfers with QUIC. We finally assess its performance and compare
different erasure correction codes through experiments using a wide range of
network and loss configurations in Section 2.3.

The content of this chapter has been published in the article QUIC-FEC:
Bringing the benefits of Forward Erasure Correction to QUIC [MDB19] and
presented at the IFIP Networking 2019 conference.

2.1 Forward Erasure Correction for long-delay

communications

FEC is especially interesting compared to retransmission mechanisms when
the delay and loss rate are high. Rula et al. [Rul+18] revealed that In-Flight
Communications (IFC) are highly deteriorated by the important latency and
loss rate, making it an interesting candidate for evaluating the benefits of
FEC. IFC technologies rely on cellular and satellite technologies. Despite
built-in redundancy and retransmission mechanisms often proposed by such

35



36 Chapter 2. QUIC-FEC: A general loss recovery QUIC extension

technologies, they may not be able to recover from packet losses, especially
when the user is mobile [Kuh+18], which explains why losses can be perceived
from higher layer perspectives in the IFC use-case. Packets can also be dropped
due to congestion and routers doing Active Queue Management (AQM).

In their work on IFC communications, Rula et al. [Rul+18] study the
potential impact of the new technologies for IFC aiming at improving the
link’s bandwidth. They conclude that improving the link bandwidth does not
improve significantly the performance as the bottleneck resides in the high
losses and latencies. They also recognise that reducing the latency and loss
rate in this use-case is challenging. We thus focus on the IFC scenario for
our first FEC extension as it presents a first ideal setup for using Forward
Erasure Correction where the benefits of the approach are straightforward
and intuitive.

In this chapter, we use the word FEC scheme to refer to the system taking
care of both the erasure correcting code and the signalling that is required to
encode and decode source and repair symbols using that particular erasure
correcting code.

2.2 Integrating FEC into QUIC

In this section, we propose a generic Forward Erasure Correction extension
for QUIC and implement it using the quic-go [al22] implementation. The
application can select the FEC scheme that suits its needs and recover from
losses without waiting for retransmissions.

Adding such a mechanism requires addressing several points. We first
describe how we advertise which are the source and repair symbols to the
peer in Section 2.2.1. We then explain how we manage to transparently handle
different FEC schemes in Section 2.2.2. We finally discuss the impact of FEC
on congestion control in Section 2.2.3.

2.2.1 Defining and exchanging the source and repair symbols

This first design considers QUIC packet payloads as source symbols. We use
a previously reserved flag of the QUIC header to inform the peer that the
packet must be considered as a source symbol and call it the FEC flag. We
add a 32-bits field to the packet header when the FEC flag is set to transmit
FEC scheme-specific values to the peer1. We only protect packets containing
STREAM frames carrying user data. Successive ACK frames contain redun-
dant information by design, reducing the impact of their losses compared to
STREAM frames.

1The use of the FEC flag and this added field will be reconsidered in the next design iterations
of this thesis, relying uniquely on QUIC frames instead.



2.2. Integrating FEC into QUIC 37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0a Data Length (15) F Offset (8)
Repair FEC Payload ID (64)

N. S. S. (8) N. R. S. (8)
Repair Symbol Payload

...

Figure 2.1: Wire format of a REPAIR frame. The Repair FEC Payload ID field

is opaque to the protocol and is populated by the underlying FEC scheme.

We introduce a new QUIC frame, the REPAIR frame, depicted in Figure 2.1.
The REPAIR frame contains the repair symbols payload as well as the Repair
FEC Payload ID 64-bits field containing FEC scheme-specific values. These
FEC scheme-specific values are handled by the underlying FEC scheme and
are opaque to the QUIC protocol. It allows easily developing new FEC schemes
independently of the behaviour and core functionalities of the QUIC protocol.
The REPAIR frame also advertises the number of source (N.S.S.) and repair sym-
bols (N.R.S.) in the current FEC Block for block codes. For convolutional codes,
these fields advertise the number of source symbols in the sliding window
and the number of repair symbols generated at each window step. They allow
the sender to dynamically change the code rate during the connection and
adapt its use of FEC to the changing network conditions. As a single repair
symbol could be too large to fit into a single REPAIR frame, the latter contains
an Offset field indicating the offset of the repair symbol chunk transported in
the frame and a FIN bit (F ) indicating if the frame contains the last chunk for
this repair symbol.

While QUIC packets are sent encrypted and authenticated, the repair sym-
bols are generated from their cleartext payload, avoiding the CPU overhead of
deciphering the recovered symbols. The confidentiality and integrity prop-
erties of the recovered symbols are still ensured since the REPAIR frame is a
classical QUIC frame sent inside the QUIC encrypted payload. No REPAIR
frame is sent before the end of the TLS handshake and 0-RTT QUIC packets
do not contain REPAIR frames.

2.2.2 The FEC Framework

The IETF has already developed solutions to add erasure-correcting codes
to several protocols. The most recent solution is the FECFRAME frame-
work [RFC6363] which has notably been applied to RTP and supports different



38 Chapter 2. QUIC-FEC: A general loss recovery QUIC extension

FEC schemes [RFC6865; RFC6816]. Inspired by FECFRAME, we define a FEC
Framework implementing the common behaviour of these FEC schemes in
order to further simplify their implementation. It provides a structure for the
different FEC scheme-specific values exchanged by the peers to proceed to era-
sure correction. Its design is described in details in a technical report [MDB18].
Our FEC Framework is designed to handle both block and convolutional codes.
For block codes, it uses the 32-bits field added in the packet header to encode
the FEC block number and the offset of this packet in the FEC block. For
convolutional FEC schemes, it uses these 32 bits to encode the offset of this
packet in the protected packets sequence. The framework also leverages 32
bits of the Repair FEC Payload ID field in the REPAIR frame with informa-
tions identifying the FEC Block (for block codes) and coding window (for
convolutional codes) protected by the repair symbol. The 32 other bits can be
populated by the underlying FEC scheme with values required to perform the
encoding/decoding.

At the time of writing the article presented in this chapter, such an in-
terfacing for FEC in QUIC also brought interest from the IETF, where the
network coding research group worked on an Internet Draft [SMR19] before
the publication of this work. While the core ideas were similar, the draft
was recommending to only protect stream chunks while our design protects
arbitrary QUIC frames of any type. Upon publicating this work, we were
invited to take part to the IETF design of the FEC extension of QUIC and
integrated the design proposed in this chapter in two new versions of the
Internet Draft [Swe+20a; Swe+20b].

2.2.2.1 Studied FEC schemes.

Our implementation supports three different FEC schemes, each of them
having different characteristics: the XOR, Reed-Solomon and Convolutional
Random Linear Code (RLC) FEC schemes. The first two use block codes and
the last one uses RLC as a convolutional code.

■ XOR FEC scheme. Its principle is quite simple: the source symbols are
simply XORed with each other to generate a repair symbol. It is easy
to implement and to compute but can only recover the loss of one
source symbol. Experiments carried out by Google showed that this is
insufficient on the Internet because losses often occur in bursts [Lan+17;
Swe17]. Our implementation uses interleaving to recover from burst
losses with the XOR FEC scheme. Sending successive packets in different
FEC Blocks enables the XOR FEC schemes to better handle burst losses
at the expense of delay.

■ Reed-Solomon FEC scheme. It can generate multiple repair symbols per



2.2. Integrating FEC into QUIC 39

source block, allowing handling of burst losses. While it better handles
burst losses than the XOR FEC scheme, it is also more computationally
intensive.

■ Convolutional RLC FEC scheme. As convolutional codes provide different
properties from block codes, our FEC extension enables their use through
the RLC error correcting code. Our implementation is inspired from the
FECFRAME RLC FEC scheme design [RFC8681].

2.2.3 FEC and the congestion control

The QUIC protocol is intended to use classical congestion control algorithms,
including the loss-based algorithms such as New Reno and Cubic. In the case
of QUIC-FEC, there are three possible scenarios impacting the loss recovery
mechanism and congestion control when it experiences a packet loss. 𝑖)
The packet was not FEC-protected. In that case, it will not be recovered. The
sender observes a hole in the acknowledgements and registers a loss. Packets
containing only REPAIR frames fall in this category. 𝑖𝑖) The packet was FEC-
protected but could not be recovered. In that case, the sender will notice the loss
and retransmit the missing STREAM frames. 𝑖𝑖𝑖) The packet was FEC-protected
and recovered. Acknowledging these recovered packets can hide the congestion
signal and make the FEC-enabled protocols behave unfairly compared to TCP
or regular QUIC, as they could potentially take more than their fair share of
the link bandwidth. In this first FEC extension, we considered three ways of
avoiding to hide the congestion notification signal due to packet losses:

1. Not acknowledging the recovered packets. This approach conservatively
considers a recovered packet as lost. It leads to a similar congestion
control behaviour to when the lost packets are not recovered with
FEC. The drawback is that the sender will perform unnecessary packet
retransmissions.

2. Acknowledging part of the recovered packets depending on the origin of
their loss. Kim et al. [Kim+14] propose to modify the loss-based conges-
tion controls for this purpose. They assume that a congestion-implied
loss event is preceded by an increase of the Round-Trip-Time (RTT)
due to the filling of the network buffers. They propose to diminish the
decrease of the congestion window after a packet loss if the current RTT
is close to the minimum observed RTT. Tickoo et al. [Tic+05] propose
to only react to congestion when it is explicitly notified by the network
nodes though the Explicit Congestion Notification (ECN) [RFB01] mech-
anism. TCP Westwood [Mas+01] estimates the link bandwidth using
the acknowledged data rate. At each loss event, it adjusts its conges-
tion window to use the estimated bandwidth instead of multiplicatively



40 Chapter 2. QUIC-FEC: A general loss recovery QUIC extension

decreasing it. In this thesis, we want a loss recovery mechanism that
works with every common congestion control algorithm, including the
ones that consider that every packet loss is due to congestion.

3. Explicitly advertising a packet recovery to the sender. This is the approach
we follow in this chapter. The recovered packet is acknowledged using
a regular QUIC ACK frame but the receiver also signals that this packet
has been recovered with an additional frame. Upon reception of this
information, the sender both adapts its congestion window according to
the loss event and removes the content of the recovered packet from its
retransmission queue. We implement this solution in QUIC-FEC with
a RECOVERED frame. Its format is similar to the QUIC ACK frame: it
advertises the ranges of newly recovered packets.

Once a sender receives a RECOVERED frame, it removes the recovered
packets from its retransmission queue. It then signals to its congestion control
that a packet has been lost for each packet listed in the RECOVERED frame.
Using the RECOVERED frame conservatively adapts the congestion window
of the sender as if every loss was caused by congestion. This behaviour is
comparable to the utilization of ECN. Once a packet containing a RECOVERED
frame is acknowledged, the recovered packets ranges are removed from the
subsequent RECOVERED frames. We analyse the impact of this approach in
Section 2.3.2.4.

This technique still sends ambiguous signals to the receiver by both ac-
knowledging a packet and signalling its reception through FEC. Such a dual
signal can create confusion on some loss-based congestion control algorithms.
The approach is refined in the next chapters to avoid this ambiguity.

2.3 Evaluation

In this section we perform a large set of experiments to assess the performance
of our implementation and analyse the benefits of this first FEC extension by
porting the HTTP use-case over QUIC-FEC. We first describe our methodology,
then perform experiments with parameters inspired by In-Flight Communi-
cations. We analyse the Download Completion Time (DCT), i.e. the time
required to complete an HTTP transfer.

2.3.1 Methodology

We use network emulation with the Mininet tool [Han+12] to evaluate the
performance of the different FEC schemes in quic-go. We perform experi-
ments with different loss models. While small burst lengths or uniform losses
can already provide an idea on the efficiency of a solution, we advocate for



2.3. Evaluation 41

Good Bad

p

r

k h

Figure 2.2: Gilbert-Elliott 2-states Markov Model

looking at longer burst lengths as well in order to evaluate our solution with
different loss configurations and handle the problematic cases encountered
by Google in 2017 [Lan+17]. We thus use the Gilbert-Elliott model [Ell63], a
standard loss model used to represent bursts of lost packets.

The Gilbert-Elliott model is a two-states Markov model used to represent
correlated losses. It is illustrated in Figure 2.2. The two states are the Good and
Bad states. In the Good state, a packet is delivered with a probability 𝑘 . In the
Bad state, a packet is delivered with a probability h. p denotes the probability
of transition from the Good to the Bad state, while r denotes the probability
of transition from the Bad to the Good state. While this model stays fairly
simple, it allows representing more complex and realistic loss patterns than a
classical uniform model [HH08].

2.3.1.1 Experimental design

We use an experimental design approach to perform our experiments [Fis49].
This methodology consists in defining wide ranges for the values of each
parameter. Numerous experiments are then performed with parameters values
sampled randomly from these wide ranges. This provides a global overview
of the entire parameters space. In addition to providing a general confidence
concerning the performance of the tested implementation, it mitigates the bias
in the parameters selection by the experimenter. We use the WSP algorithm
[SCS12] to broadly sample the space of parameters with a reasonable number
of experiments. Unless otherwise specified, we run the experiments with 130
different combinations of parameters. Each configuration is run 9 times and
the median download completion time from these 9 runs is considered. The
experiment consists in an HTTP GET request for a particular file using QUIC.
Figure 2.3 shows the network topology used for our experiments. We apply
the delay, losses and bandwidth limitation on the link between the two routers.
Table 2.1 shows the parameters ranges chosen for our experiments. It specifies
ranges for the One-Way Delay (OWD), bandwidth (BW), uniform loss rate (𝑝)
when a uniform loss model is used and the state-transition probabilities (𝑝 , 𝑟 ,
𝑘 and ℎ) when a Gilbert-Elliott loss model is used. The parameters values are
inspired from the work of Rula et al. on In-Flight Communications [Rul+18].



42 Chapter 2. QUIC-FEC: A general loss recovery QUIC extension

Host Server

{ BW, p, r, k, h, OWD }

Figure 2.3: Network topology for our experiments.

Parameter BW (Mbps) 𝑝 𝑟 𝑘 ℎ OWD (ms)
Smallest 0.3 0.01 0.08 0.98 0 100
Highest 10 0.08 0.5 1 0.1 400

Table 2.1: Experimental design parameter ranges.

As the authors specified one representative set of parameters for Direct Air-to-
Ground Communication (DA2GC) and one set for Mobile Satellite Service (MSS),
we built our ranges around these values and perform experiments with many
combinations of different values within these ranges, covering most of the loss
conditions they experienced. For each set of parameters, the experiment uses
4 file sizes: 1kB, 10kB, 50kB and a larger file of 1MB. These sizes are intended
to represent typical file sizes for the web browsing use-case.

As this is a first attempt of extending the QUIC loss recovery mechanism
with FEC, the experiments are applied with a fixed code rate. Unless otherwise
specified, the level of redundancy is set to (30, 20) for the Reed-Solomon code
and (3, 2, 20) for the RLC FEC Scheme. This ensures a code rate of 2

3 and a
burst recovery capability of 10 symbols per block. Adapting the code rate to
the network characteristics as well as the application traffic is explored in the
next chapters of this thesis.

2.3.1.2 Reproducible experiments

We strongly advocate for having reproducible experiments in order to easily
analyse the results. It also enables a fair comparison between the two solutions
and assess them under equal conditions since the number of lost packets as
well as their exact position in the transfer have a significant impact on the
download completion time. Mininet already provides tools to emulate uniform
losses on a link but neither provides a Gilbert-Elliott loss model nor a way
to deterministically reproduce the loss pattern of an experiment. We thus
built our own tool, ebpf_dropper [Mic23a], allowing emulating losses in
a network in a deterministic and reproducible manner. This tool, written
using the extended Berkeley Packet Filter (eBPF) [Fle17a], can be attached to
a network node via the tc tool. It provides a uniform and a Gilbert-Elliott
deterministic loss model, which can be given a seed to exactly reproduce the
sequence of lost packets for all the solutions studied here. In this thesis, all the



2.3. Evaluation 43

experiments performed using emulations or simulations leverage reproducible
and deterministic loss patterns.

2.3.2 Results with uniform losses

As Rula et al. [Rul+18] proposed a uniform loss rate for the IFC use-case, we
first perform experiments with uniform losses and investigate the benefits of
FEC in QUIC in these configurations. We first study the two average cases
for IFC. We then extend the parameters ranges using experimental design.
We compare the regular QUIC with our QUIC-FEC implementation, using
different error-correcting codes: the RLC and Reed-Solomon codes. We do not
present the results for the XOR code, as it showed similar or poorer results to
these two codes.

2.3.2.1 Specific IFC use-cases

In this section, we study in details the average parameters values proposed
by Rula et al. [Rul+18] for Mobile Satellite Service and Direct Air-To-Ground
Communications with different deterministic uniform loss patterns. For each
case, we performed 50 experiments for each file size with a different seed for
our deterministic loss generator, allowing experimenting with a high variety
of loss patterns. We do not explore here the results with the Reed-Solomon
code as RLC outperforms it in this uniform losses environment.

2.3.2.1.1 Direct Air-To-Ground Communication (DA2GC) We experi-
ment with the average parameters values for the DA2GC scenario where the
classical cellular network is used when the cellular antennas are in reach of the
airplane [Rul+18]. This leads us to an average Round-Trip-Time of 262ms, a
link bandwidth of 0.468 Mbps and a loss rate of 3.3%. The results are presented
on the left graph of Figure 2.4. As we can see, even within the same set of
parameters, the experiment can lead to quite different results when run with
different seeds governing the loss patterns. With small file transfers, only a
few packets are lost, if any.

As we can see, the 1kB file download sees only a positive impact or no
impact when FEC is used. The file can be contained in a single STREAM
frame and is not large enough to saturate the sender’s congestion window
even when FEC is used, so the redundancy overhead of FEC does impact
negatively the transfer. However, when the packet containing the STREAM
frame is lost, QUIC-FEC recovers it as soon as the REPAIR frame is received.
The regular QUIC implementation will have to wait for at least one RTT to
retransmit the lost frame. In the case of a 1kB file download, the loss of the only
STREAM frame is a tail loss, that will be retransmitted once the Probe Timeout



44 Chapter 2. QUIC-FEC: A general loss recovery QUIC extension

0.5 1 1.5 2
DCTRLC
DCTQUIC

0.0

0.5

1.0

CD
F

0.5 1 1.5 2
DCTRLC
DCTQUIC

0.0

0.5

1.0

1kB 10kB 50kB 1MB

Figure 2.4: Download Completion Time (DCT) ratio between QUIC-FEC with

the RLC block code and QUIC for the average DA2GC (left) and MSS (right)

parameters values. A ratio below 1 means that QUIC-FEC performed better

than QUIC. For DA2GC, FEC was only beneficial for 25% of the experiments

for small file sizes. FEC noticeably deteriorates the performance in the other

cases, due to the low bandwidth. For MSS, FEC can improve the performance

in 75% of the cases for 50kB file transfers and does not deteriorate it when no

loss occurs during small file transfers, due to the higher available bandwidth.



2.3. Evaluation 45

(PTO) mechanism is triggered, which takes more time than the standard
acknowledgement-based loss detection mechanism of QUIC [RFC9002].

The advantages of FEC are less evident for larger files: for both 10kB
and 50kB files, using FEC can deteriorate the download completion time due
to the added redundancy. This result can easily be explained. With such a
low bandwidth, the network forwards one packet of 1200 bytes every 20.5
milliseconds. Even in the case of a limited number of packets such as with
the transfer of a 10kB file, the impact of the additional network capacity
required to transfer the repair symbols will be noticed with such a limited
bandwidth. This negative impact is even more visible on the 1MB curve,
with an download completion time increase of 50%, directly related to the
redundancy overhead sent by QUIC-FEC (recall that one repair symbol is sent
every two source symbols). The advantage of FEC is especially visible when
a packet loss occurs during our 1kB, 10kB and 50kB downloads: recovering
the lost symbol through FEC reduces the DCT compared to a retransmission.
These first results clearly show the potential of using FEC in QUIC as well as
the drawbacks of the approach when redundancy is sent without care. This
illustrates the complexity of the FEC mechanism and sets up the stage for the
rest of this thesis. The end goal is to obtain significant latency improvements
while avoiding such a negative impact due to redundancy overhead.

2.3.2.1.2 Mobile Satellite Service (MSS) We also experiment with the
average parameters values for the Mobile Satellite Service scenario. In this
scenario, network access is provided in the plane using a satellite connection.
This is the most common scenario in airplanes and has the advantage of being
available in the middle of the ocean, despite an increased delay compared to
DA2GC. We set a Round-Trip-Time of 761ms, a link bandwidth of 1.89 Mbps
and a loss rate of 6% following the statistics collected by Rula et al. [Rul+18].
The graph at the right of Figure 2.4 shows the DCT ratio between QUIC-FEC
with RLC and QUIC without the FEC extension. As we can see, using FEC
reduces the total DCT in the vast majority of the smaller files downloads. The
loss rate is sufficiently large to have a highly negative impact on the DCT that
will be withdrawn through the use of FEC. As the bandwidth is significantly
higher than for the DA2GC case, the negative impact of FEC on smaller files
is less present. It can be easily seen when comparing the 10kB curves for the
DA2GC and MSS cases: when no loss occurred, the ratios are significantly
closer to 1 for the MSS case. Finally, we can note a higher variance of the DCT
ratio for the 1MB files compared to the DA2GC scenario. This is due to the
higher available bandwidth and RTT: the congestion window can take larger
values before encountering the first packet loss making the sender exit the
slow start phase. The position of the first loss in the loss pattern has thus a
higher impact than with a smaller available bandwidth and smaller RTT.



46 Chapter 2. QUIC-FEC: A general loss recovery QUIC extension

0.5 1 1.5 2 2.5 3
DCTReed−Solomon

DCTQUIC

0.0

0.5

1.0
CD

F 1kB
10kB
50kB
1MB

Figure 2.5: DCT ratio between QUIC-FEC with the Reed-Solomon block code

and the regular QUIC.

2.3.2.2 Experimental design

We now use the experimental design approach to explore a broader set of
parameters values. Figure 2.5 shows the CDF of the DCT ratio between QUIC-
FEC using Reed-Solomon and the regular QUIC, with four different file sizes.
Each experiment in this CDF has been performed with parameters selected
from the ranges shown in Table 2.1.

2.3.2.2.1 Large files transfers We can easily see that QUIC-FEC performs
badly compared to the regular QUIC with the 1MB file in nearly every scenario,
showing the limits of FEC when not used adaptively. With the 2

3 code rate
applied in this experiment, QUIC-FEC has to transfer 1.5 times the amount of
bytes transferred by regular QUIC (ignoring the potential retransmissions),
which increases the overall download completion time. With longer files, the
benefits brought by FEC are thus masked by the overhead needed to transmit
the redundancy.

2.3.2.2.2 Small files transfers The advantage of FEC is more visible
on small file transfers. Recovering a packet with FEC avoids the wait for a
retransmission. A retransmission costs at least one additional round-trip time.
With small files, the wait for this additional round-trip has a higher relative
impact on the overall DCT. The experimental design also shows that there is a
benefit in protecting the client request. For instance, our 108th test discards the
client packet containing the GET request. The server then recovers it without
the need for the client to retransmit it and can directly begin to serve the



2.3. Evaluation 47

request. It should however be noted that the approach becomes beneficial only
when the client’s request is composed of more than one packet. Otherwise,
protecting the client’s request is equivalent to simply duplicating it.

When looking more closely at our results, we can also see that FEC can
still be harmful, depending on the loss pattern and the available bandwidth.
Indeed, for experiments during which no loss occurred and with a low available
bandwidth, using FEC sensibly increases the DCT, even for the 10kB and 50kB
files transfers. These configurations are indeed similar to the DA2GC scenario.
The additional time needed to transmit the redundancy is non negligible
compared to the overall DCT. This overhead is greatly reduced for experiments
with a higher available bandwidth.

2.3.2.2.3 Comparing FEC codes We now compare the impact of the FEC
Scheme used for these different file sizes. Figure 2.6 shows the DCT ratio
between QUIC-FEC using the RLC convolutional code and QUIC-FEC using
the Reed-Solomon block code. As we can see, RLC performs significantly
better than Reed-Solomon with the 1MB file transfer. This can be explained
easily by the way these two codes send their source and repair symbols. These
two codes provide the same code rate and a similar packet recovery capability.
However, the RLC code interleaves the packets containing the REPAIR frames
with the FEC-protected QUIC packets. On the other hand, the Reed-Solomon
code sends all its REPAIR frames after the block containing the FEC-protected
packets has been sent. In our experiments, the RLC code sends one REPAIR
frame every two FEC-protected packets. The Reed-Solomon code sends 10
REPAIR frames every 20 FEC-protected packets. If the first FEC-protected
packet of a Reed-Solomon block is lost, the receiver will have to wait for
receiving the 19 other FEC-protected QUIC packets and one repair symbol
before being able to recover it. On the other hand, the RLC code must only wait
for the reception of two additional symbols: the following QUIC packet and
the following REPAIR frame. With a packet-based loss detection threshold of 3
packets such as the one defined in the QUIC loss recovery document [RFC9002],
using the Reed-Solomon code will trigger a spurious retransmission on the
sender in most cases as the packet has been recovered too late. The spuriously
retransmitted packet will occupy the congestion window of the sender, while
a new packet will be sent when RLC is used.

2.3.2.3 Exploring the impact of redundancy overhead

During the previous experiments, we saw that FEC performed badly when no
loss occurs and when the available bandwidth is low. We now study to which
extent using FEC in the QUIC loss recovery mechanism can deteriorate the
DCT. We perform experiments with the same parameters, except for the loss



48 Chapter 2. QUIC-FEC: A general loss recovery QUIC extension

0.6 0.8 1 1.2 1.4 1.6
DCTRLC

DCTReed−Solomon

0.00

0.25

0.50

0.75

1.00
CD

F
1kB
10kB
50kB
1MB

Figure 2.6: DCT ratio between QUIC-FEC with the convolutional RLC code

and QUIC-FEC with the Reed-Solomon block code.

rate that we set to 0%. Figure 2.7 shows the DCT ratio comparing QUIC-FEC
with RLC and regular QUIC. On the left (resp. right) of the figure, QUIC-
FEC uses RLC with a code rate of 2

3 (resp. 4
5 ). As we can see, except for

some results due to a slight variance in our experiments, using FEC always
deteriorates the DCT for large transfers. When looking more closely at our
results, we saw that the DCT for small downloads is mostly deteriorated when
the available bandwidth is low. Unsurprisingly, we observe that increasing the
code rate reduces the negative impact of FEC on the DCT. These experiments
show that for large bulk transfers where performance is directly related to
throughput, the classical SR-ARQ mechanism of QUIC is the most efficient
way of delivering the data. This shows the need for adjusting the redundancy
level during the lifetime of a connection.

Adaptive coding schemes are already studied in the literature at differ-
ent levels in order to reduce the negative impact of over-coded transmis-
sions [NTM08; Hou+08; ZZZ04; CP07; Zha+05; CLM15]. It is however known
that ARQ offers better performance than FEC for larger bulk transfers [Zha+05].
This is also what we can observe from our experiment. The general QUIC loss
recovery mechanism we aim for in this thesis should therefore limit the use of
FEC and mostly rely on SR-ARQ for throughput-driven use-cases. Note how-
ever that SR-ARQ requires large buffers to store the received packets. While
QUIC receive buffers can generally be large (up to several megabytes), there
are cases where they remain a factor limiting the performance of SR-ARQ.
We explore in Chapters 5 and 7 how FEC can help for these buffer-limited
scenarios.



2.3. Evaluation 49

0.5 1 1.5 2
DCTRLC
DCTQUIC

0.0

0.5

1.0

CD
F

0.5 1 1.5 2
DCTRLC
DCTQUIC

0.0

0.5

1.0

1kB 10kB 50kB 1MB

Figure 2.7: DCT ratio between QUIC-FEC with RLC and the regular QUIC

with a loss rate of 0%. On the left, the used code rate is
2
3 , while on the right,

the code rate is
4
5 . Increasing the code rate reduces the impact of FEC on the

bandwidth.

2.3.2.4 The importance of recovery notification

In Section 2.2.3 we proposed the RECOVERED frame to notify the peer that
packets have been recovered to avoid hiding the loss-based congestion signal.
In this section, we analyse the impact of this notification on the fairness of
QUIC-FEC.

The connection parameters used for this experiment are the parameters of
the MSS scenario, except that we set a loss rate of 0% to avoid disturbing the
experiment with random losses. Losses will only be caused by congestion. We
use a (7, 6, 20) RLC code, leading to a code rate of 6

7 , to better see the impact
of masking the congestion signal when no RECOVERED frame is sent. Indeed,
with a higher code rate such as 2

3 , a large part of the packet flow is composed
of packets containing only a REPAIR frame. The loss of a single REPAIR frame
does not lead to the transmission of a RECOVERED frame since this loss does
not impact the receiver, but it is still announced in ACK frames. The sender
thus still receives a frequent loss signal when many REPAIR frames are lost.
With a higher code rate such a 6

7 , losses of packets containing only REPAIR
frames and the related congestion signal will be less frequent.

Our experiment consists in performing a 10MB file transfer with the regu-
lar QUIC implementation (we call it the foreground transfer) while the link is
already fully utilised by another transfer (we call it the background transfer).
We consider three different candidates for the background transfer: 1) another



50 Chapter 2. QUIC-FEC: A general loss recovery QUIC extension

Regular QUIC FECRF FECNo RF
Background transfer candidates

100

125

150

175
Fo

re
gr

ou
nd

tra
ns

fe
rD

CT
[s

]

Figure 2.8: DCT of a regular QUIC transfer when competing with QUIC, QUIC-

FEC with RECOVERED frames and QUIC-FEC without RECOVERED frames.

regular QUIC transfer, 2) a QUIC-FEC connection that uses RECOVERED
frames (RF) and 3) a QUIC-FEC transfer that simply acknowledges the recov-
ered packets, without sending RECOVERED frames. We compare the DCT of
the foreground transfer in these three cases. The left, middle and right box
plots in Figure 2.8 respectively represent the DCT of the foreground transfer
for the first, second and third cases.

As we can see, the regular QUIC download takes generally longer when it
competes with a QUIC-FEC transfer that does not send RECOVERED frames.
This is due to the fact that in this case, the congestion signal is lost when packet
losses caused by congestion are recovered and simply acknowledged by the
receiver. This makes a FEC-enabled protocol unfair compared to traditional
protocols such as regular QUIC that only use retransmissions. The middle
box plot shows that when QUIC-FEC uses RECOVERED frames, there is no
difference between a QUIC sender competing with another QUIC sender or a
QUIC-FEC sender.

2.3.3 Results with bursty losses

In this section, we analyse the impact of using FEC in the case of correlated
losses. We perform the same experiments with a Gilbert-Elliott loss model.
The parameters of these experiments are shown in Table 2.1. We remove from
our results the experiments whose intense loss patterns prevent a successful
file transfer. We show the comparison of QUIC-FEC with RLC and the regular
QUIC in Figure 2.9. We can see that the results are close to the results with
uniform losses shown in Figure 2.5: using FEC has benefits for smaller transfers
and the 1MB file transfer suffers from the added redundancy.



2.4. Conclusion 51

0.1 0.5 1 2 10
DCTRLC
DCTQUIC

0.0

0.5

1.0
CD

F
1kB
10kB
50kB
1MB

Figure 2.9: DCT ratio between QUIC-FEC with the RLC block code and QUIC,

using the Gilbert-Elliott loss model.

When looking more closely at our results, it appears that using FEC per-
forms badly when the 𝑟 parameter of the Gilbert-Elliott model is low. For the
download of 10kB and 50kB files, the average DCT ratio for our experiments
when 𝑟 ≤ 12% is above 1, while it is below 1 otherwise.

2.4 Conclusion

This chapter presented a first revisit of the QUIC loss recovery mechanism.
Using this extension, QUIC is able to timely recover from packet losses at the
expense of additional bandwidth usage. Our design and implementation are
modular and can support a variety of FEC techniques with different levels of
redundancy. Using the RECOVERED frame, the sender can correctly adjust its
congestion window when the receiver uses FEC to recover from packet losses.

Our evaluation over a wide range of network scenarios shows that a FEC-
enabled loss recovery mechanism can bring significant benefits for small file
transfers, especially when losses occur during the last packets flight. For
such cases, the packet retransmission is often triggered after all application
data have been sent. Sending repair symbols therefore avoids waiting for
the retransmission to be sent. These experiments also showed us that FEC is
not the only answer for a general QUIC loss recovery mechanism. Sending
unused repair symbols can indeed significantly deteriorate the performance of
troughput-driven transfers such as the bulk downloads studied in this chapter.
FEC must therefore be used cautiously and in conjunction with the SR-ARQ
loss recovery mechanism already provided by QUIC. Sensitivity to the network
characteristics and to the application are two areas of improvement that we



52 Chapter 2. QUIC-FEC: A general loss recovery QUIC extension

explore later in this thesis.
We also compared blocks and convolutional codes and showed that the

convolutional code can recover from single loss events more rapidly than
block codes, leading to a better bandwidth efficiency by avoiding spurious
retransmissions. For those reasons, we focus on convolutional codes in the
next chapters of this thesis.

This first FEC extension also initiated a more general reflection on the
interactions of network coding and loss-based congestion control mechanisms
at the transport layer, by explicitly informing the peer of symbols recovery
using the new RECOVERED frame. These thoughts led to discussions at the
IETF, resulting to the RFC9265 document discussed in the next chapter.



The interactions between

FEC and congestion

control

3

Since FEC can repair lost packets, blindly applying FEC may easily lead to an
implementation that also hides congestion signal from the sender, adopting an
unfair behaviour towards uncoded connections. It is important to ensure that
such hiding of information does not occur since packet loss may be the only
congestion signal available to the sender (e.g., TCP New Reno [RFC5681] or
Cubic [HRX08]). Hiding this signal may lead to the fairness problem exposed
in the previous chapter. This chapter offers a discussion on how coding
and congestion control should coexist. Another objective is to encourage
the research community to also consider congestion control aspects when
proposing and comparing FEC coding solutions in communication systems.

This chapter summarizes the personal contributions of this thesis to the
IETF that led to the publication of the RFC9265 document [RFC9265]. This
document represents the collaborative work and consensus of the Coding for
Efficient Network Communications Research Group (NWCRG).

3.1 Symbols and packets are conceptually separate data units

We propose the model illustrated in Figure 3.1 to represent the mechanisms
established on a FEC-enabled transport protocol. Classical transport protocols
such as QUIC and TCP have a Sender and a Receiver component that respec-
tively generate and consume network packets. The Sender component packs
protocol information (e.g. QUIC frames) into packets that are then sent over
the network. In the case of a transport protocol with FEC capabilities, it also
disposes of FEC Encoder and Decoder parts.

When the application wants to send new data over the connection (left
part of Figure 3.1), the Encoder encodes the application data into one or several
source symbols and generates repair symbols protecting these when needed.
These symbols are then packed into network packets by the Sender. In the
case of QUIC-FEC discussed in Chapter 2, the Sender sets the FEC flag and
adds the 32-bits header field when the packet contains a source symbol. When
repair symbols must be sent, the Sender packs them inside REPAIR frames. On

53



54 Chapter 3. The interactions between FEC and congestion control

Sender ReceiverCongestion
control

Network

FEC
Encoder

FEC
Decoder

Application

Received
source and
repair symbols

Report received and recovered symbols
Source and

repair symbols
to send

Report received
and lost packets

Adjust sending rate

Application data
to send Received and recovered

application data

Network packets
to send Received

network packets

Transport protocol

Packs symbols Unpacks symbols

Figure 3.1: Coding-enabled transport protocol. Packets can only be received

from the networkwhile symbols can either be received as-is from the network

or recovered through the FEC decoding process. Packet reception is therefore

a separate signal from symbol reception.

the receiving path (right part of Figure 3.1), the Receiver consumes network
packets and unpacks the symbols it contains. It provides the received symbols
to the FEC Decoder that then recovers the lost source symbols if they exist. It
finally passes the application data present in the newly received or recovered
source symbols to the application.

As discussed in Chapter 1, the Sender has to adapt its sending rate to
the network bandwidth to avoid causing congestion on the network. To do
so, the congestion control component of the protocol takes feedback from
the Receiver and adequately adjusts the sending rate of the Sender. Most
congestion control mechanisms use packet loss as a signal of congestion in the
network. This is based on the fact that congested routers drop newly arriving
packets.

It is important to note that congestion control algorithms only care about
network packets as they are the only data units dropped due to congestion.
Network routers in this system have no notion of source or repair symbols.
From Figure 3.1, we can see that only the Sender and Receiver components are
directly connected to the network as they are the only two components that
directly handle network packets. Recovering a missing source symbol on the
decoder provides no additional information on whether the packet carrying it
was actually dropped by the network.



3.2. Congestion control behaviour upon symbol recovery 55

3.2 Congestion control behaviour upon symbol recovery

Existing research work use the information that a symbol has been recov-
ered to hide the related packet loss event from the congestion control algo-
rithm [Sun+11; Gar+19]. Used conjointly with loss-based congestion control
mechanisms such as Cubic or New Reno, this has the effect of avoiding the
congestion window reduction upon packet loss, leading to a larger sending
rate. The drawback of this approach is that the congestion control mecha-
nism only receives an incomplete congestion signal, preventing it to correctly
infer the congestion state of the network using its traditional algorithm. FEC-
enabled connections can therefore become unfair to non-FEC-enabled ones
since FEC-enabled transfers tend to ignore a significant part of the congestion
signal, as discussed in Chapter 2.

This fairness problem led to several research recommendations that we
included in the RFC9265 document, listed below.

1. From a congestion control point of view, a lost-and-recovered packet
must be considered as a lost packet. This however does not apply to the
usage of FEC on a path that is known to be lossy with non-congestion
losses.

2. When a research work aims at increasing throughput by hiding the
packet loss signal from congestion control (e.g., because the path be-
tween the sender and receiver is known to consist of a noisy wireless
link), the authors should (𝑖) discuss the advantages of using the pro-
posed FEC solution compared to purely replacing the congestion control
by one that ignores a portion of the encountered losses and (𝑖𝑖) critically
discuss the impact of hiding packet loss from the congestion control
mechanism.

QUIC-FEC presented in Chapter 2 follows (and led to) the first recommen-
dation by signalling every recovered symbol using the RECOVERED frame.
By doing so, the QUIC sender does not need to retransmit the recovered data
while having the packet loss signal taken into account in its congestion control
mechanism. The second recommendation comes from the fact that the gain
in throughput brought by FEC is mainly due to the masking of losses to the
congestion control algorithm. This behaviour can be accomplished without
FEC by simply using a congestion controller ignoring packet losses. This
is done by TCP/NC [Sun+11] that replaces loss-based congestion controls
by Vegas that uses delay increase as a congestion signal [BOP94]. Kim et al.
define a new congestion control algorithm reducing the congestion window
backoff of New Reno based on the current delay increase [Kim+14]. RFC9265
formally recommends this to be the good practice when using network coding



56 Chapter 3. The interactions between FEC and congestion control

as part of a transport protocol. QUIC-FEC does not entirely follow the second
recommendation as recovered packets are acknowledged using ACK frames
and then the congestion window is reduced upon receiving the RECOVERED
frame. This technique adds an unneeded interaction between the congestion
control algorithm and the FEC mechanism: the packet loss signal is hidden
during the time between the reception of the ACK frame and the RECOVERED
frame. The next chapters improve this mechanism in order to correctly follow
the recommendations discussed here.



PQUIC: towards really

flexible transport

protocols

4

The extended loss recovery proposed by QUIC-FEC was designed and im-
plemented using the existing extension mechanism provided by QUIC: it
extends the packet header and uses new QUIC frames to define new pro-
tocol behaviours. To do so, the protocol implementation is modified and
recompiled, to be finally deployed on clients and servers by updating both.
Such extension mechanisms allowed transport protocols to evolve over re-
cent decades [RFC7414]. Although the TCP specification is more than fourty
years old, the protocol can be updated using extensions. A modern TCP
stack supports a long list of TCP extensions (window scale [RFC1323], times-
tamps [RFC1323], selective acknowledgments [RFC2018], Explicit Congestion
Notification [RFC3168] or multipath extensions [RFC8684]) that have been
proposed along the years. However, measurements indicate that it remains
difficult to deploy TCP extensions [Fuk11; Hon+14]. The window scale and
selective acknowledgment options took more than a decade to be widely
deployed [Fuk11]. While being part of the Linux kernel since version 5.6,
Multipath TCP is only available on one major mobile OS [App18] and is not
available on Android. This slow deployment of TCP extensions is caused by
three main factors. First, popular stacks rarely implement TCP extensions
unless they have been approved by the IETF. Second, TCP is still part of the
operating system and client and server implementations are not upgraded at
the same speed. Often, maintainers of client (resp. server) implementations
wait until server (resp. client) implementations support a new extension before
implementing it. This results in a chicken-and-egg deployment problem. Third,
some middleboxes interfere with the deployment of new protocol extensions
as discussed in the previous chapters [Hon+11; Hes+13].

Google’s first version of QUIC was proprietary and did not require IETF
consensus to be updated. As QUIC runs above UDP it is possible to ship it
as a library which can be updated as often as applications. Measurements
indicate that Google updated its version of QUIC at the same pace as its
Chrome browser [Rüt+18]. With this system, the real winners are companies

57



58 Chapter 4. PQUIC: towards really flexible transport protocols

controlling both the server and the users’ devices such as Google with Android
and Apple with iPhones. As the QUIC stack does not sit in the operating system
kernel anymore, these actors can update the QUIC implementation unilaterally
on their servers and on the users’ devices.

Other service providers only have limited control on how the transport
stack can behave. While they can easily tune the QUIC stack running on
the server, it is not always possible for them to customize the QUIC protocol
running on the client. For instance, a web browser application can only access
QUIC through HTTP/3 or through the WebTransport API [W3C23b]. Complex
extensions such as FEC can easily be implemented and shipped in browsers
by Google if they need it, but it is not doable by smaller Internet actors as they
cannot modify the browser source code.

In this chapter, we completely revisit the extensibility of transport pro-
tocols. We model the transport protocol as a set of basic functions that can
be tuned, combined and dynamically extended to support new use cases on a
per-connection basis. Such an approach enables QUIC applications to adapt
the underlying transport layer to their specific needs, e.g., using specialized
retransmission algorithms or taking advantage of non-standard extensions.
The work developed in this chapter eases the deployment of a heavy extension
such as FEC and is a first step to enable the use of a loss recovery mecha-
nism tailored to the application, explored in Chapter 5. We make four main
contributions in this chapter.

■ We design a technique where an extension to the QUIC protocol is
broken down in a set of protocol plugins which can be dynamically
attached to an existing implementation. These plugins interact with this
implementation through code that is dynamically inserted at specific
locations called protocol operations.

■ We propose a safe and scalable technique that enables the on-demand
exchange of protocol plugins over QUIC connections. This solves the
deployment problem of existing protocol extensions.

■ We implement a prototype of Pluginized QUIC (PQUIC) by extending
picoquic [Hui22a], one of the most complete implementations of IETF
QUIC [PDB18] at the time of writing this work. We add to picoquic a
virtual machine that allows executing the bytecode of protocol plugins
in a platform independent manner while monitoring their behavior.

■ In this chapter, we especially focus on the interest of PQUIC in redifining
more easily the protocol’s loss recovery. We design and implement our
Forward Erasure Correction technique using only protocol plugins.

This work has been published and presented at the SIGCOMM’19 con-
ference and has been done in collaboration with several colleagues [De +19].



4.1. Pluginizing QUIC 59

Transport Protocol (QUIC)
Congestion control Loss recoveryLoss recovery ...

Built-in FEC plugin

Figure 4.1: Using PQUIC, protocol behaviours such as loss recovery can be

redefined on a per-connection basis by inserting protocol plugins.

This chapter focuses on the interest of PQUIC in redifining the protocol’s
loss recovery. We design and implement our Forward Erasure Correction
technique using only protocol plugins.

4.1 Pluginizing QUIC

From the implementation viewpoint, the main difference between a PQUIC
implementation and a QUIC one is that PQUIC is easily customizable on a
per-connection basis. This customization relies upon a modular and extensible
design that allows adding and modifying behaviors for the target flows. A
PQUIC implementation can be extended by dynamically loading one or more
protocol plugins. A protocol plugin consists of platform-independent bytecode
which can be executed within the PQUIC implementation. Figure 4.1 illustrates
how we decompose the transport protocol as a set of behaviours that can be
redefined. The protocol uses the built-in behaviours of the implementation by
default, but applications can override these default behaviours by inserting
protocol plugins. Like in Figure 4.1, an application can replace the default loss
recovery behaviour by a FEC-enabled one using a FEC protocol plugin.

A PQUIC implementation provides an API for protocol plugins.

Most protocol implementations are designed as black-boxes that expose a small
external API to applications. For example, a TCP implementation exposes
the socket API. A PQUIC implementation can be represented as a gray-box
containing a set of functions that are exposed to protocol plugins. In PQUIC, we
call these functions protocol operations (protoop). These are common routines
being part of any implementation, and the workflow of PQUIC can be expressed
as a succession of such protocol operations. As in a classical programming API,
each protocol operation has a specification and a set of conditions under which
it should be called. Sample protocol operations in PQUIC include the parsing
and the processing of frames, setting the retransmission timer, updating the
RTT, removing acknowledged frames from the sending buffer, etc.

On-the-fly protocol plugin insertion. We use the word pluglet to refer
to the set of bytecode instructions implementing a protocol operation. A pluglet
consists of bytecode instructions implementing a function, e.g., computing



60 Chapter 4. PQUIC: towards really flexible transport protocols

an RTT estimate. A protocol plugin consists of the set of all pluglets needed
to implement some protocol behaviour, such as loss recovery or congestion
control. Once a PQUIC connection is established, PQUIC can potentially load
plugins at any time.

Isolation between connections and between plugins. Each plugin is
instantiated to operate on a given connection. Our framework ensures that
each instance has its own memory which is only shared among pluglets of
this plugin. The plugin memory is isolated from access or sharing with any
other plugin or connection. This yields strong memory safety guarantees
for the plugins and the sharing of information. Interactions are still possible
through the protocol operation interface or by calling the functions exposed
by PQUIC. However, these are clearly defined information flows that ease
reasoning about the behavior and the safety of the plugins.

The rest of this section details the core elements of PQUIC. We first describe
the environment executing pluglets. Then, we elaborate on the concept of
protocol operations. We finally describe how pluglets can interact with the
PQUIC core.

4.1.1 Pluglet Runtime Environment (PRE)

Pluglets are the building blocks of the protocol plugins. These pieces of
bytecode are independent of the PQUIC implementation itself. Therefore, we
need to provide an environment to execute them. This environment has to
solve two major concerns. First, it has to provide an abstraction where plugins
can run regardless of the underlying hardware and operating system. Second,
given the untrusted nature of the plugins, the environment should keep each
pluglet under control.

To address these two issues, PQUIC executes plugins inside a lightweight
virtual machine (VM). Various VMs have been proposed for different pur-
poses [Lin+14; Haa+17; Wan+15; Geo+10; BMG99; Fle17b]. In this paper, our
Pluglet Runtime Environment (PRE) relies on a user-space implementation [IO
18] of the eBPF VM [Fle17b] present in the Linux kernel since 2014 where it
has been used to support various services [Edg15; Gre15; Bra17]. Similarly to
the Linux kernel, PQUIC allows performing Just-In-Time (JIT) compilation of
eBPF bytecode into native host CPU instructions to enhance the performance
of the running plugins. For kernel security reasons the eBPF VM can be too
restrictive to implement some legitimate behaviors. The kernel-space eBPF
VM includes a verifier that is very conservative, as it puts hard limits on the
size and complexity of an acceptable eBPF program.

Our implementation extends a relaxed version of the eBPF verifier with ad-
ditional monitoring capabilities. Those are similar to works in Software-Based
Fault Isolation [Wah+94; Yee+09]. First, our PRE checks simple properties of



4.1. Pluginizing QUIC 61

the bytecode to ensure its apparent validity. This includes checking that: (𝑖)
the bytecode contains an exit instruction, (𝑖𝑖) all instructions are valid (known
opcodes and values), (𝑖𝑖𝑖) the bytecode does not contain trivially wrong oper-
ations (e.g., dividing by zero), (𝑖𝑣) all jumps are valid, and (𝑣) the bytecode
never writes to read-only registers. Furthermore, our PRE statically verifies
the validity of stack accesses. A plugin is rejected if any of the above checks
fails for one of its pluglets.

Second, our PRE monitors the correct operation of the pluglets by injecting
specific instructions when their bytecode is JITed into native machine code.
These monitoring instructions check that the memory accesses operate within
the allowed bounds. To achieve this, we add a register to the VM that cannot
be used by pluglets. This register is used to check that the memory accesses
performed by a pluglet remain within either the plugin dedicated memory or
the pluglet stack. Any violation of memory safety results in the removal of
the plugin and the termination of the connection. The LLVM Clang compiler
supports the compilation of C code into eBPF. This allows us to abstract the
development of pluglets from eBPF bytecode and propose a convenient C API
for writing pluglets.

4.1.2 Protocol Operations

In order to attach pluglets to PQUIC, we define an API identifying the differ-
ent protocol operations where the pluglets can be attached. Each protocol
operation has its own name, inputs, outputs and specifications. Some protocol
operations can also be parametrized so that different pluglets implementing
different behaviours can be inserted for different parameter values. The most
straightforward example being the protocol operations reading and writing
frames: the parameter is the QUIC frame type and different pluglets can be
inserted concurrently to read and write different types of frames. This allows
implementing new types of QUIC frames (e.g. the REPAIR frame used in QUIC-
FEC) only relying on protocol plugins and without impacting the processing
of other frames. Our PQUIC implementation currently includes 72 protocol
operations. Four of them take a parameter. We can split these operations into
several categories. A first category concerns the handling of the QUIC frames.
This includes their parsing, processing and writing. A second category groups
all the internal processing of QUIC. It contains the logic for retransmissions,
updating the RTT, estimation, deciding which stream is to send next, etc. A
third category involves QUIC packet management. It includes setting the Spin
Bit [RFC9000], retrieving the connection IDs, etc. A fourth category concerns
protocol operations that are not part of the base protocol but that are defined
by protocol plugins themselves. For instance, a protocol plugin can define new
protocol operations providing packet loss or one-way delay estimations that



62 Chapter 4. PQUIC: towards really flexible transport protocols

process_ack_frame update_rtt

(a) Monolithic design.

process_frame [ACK] update_rtt

PRE

PRE

POST

RE
PL

AC
E

RE
PL

AC
E

POST

(b) PQUIC design.

Figure 4.2: Turning a monolithic design into protocol operations with the

ACK processing example. It also illustrates the different anchors for the

pluglets.

can be called and used by other protocol plugins.
To illustrate how an implementation can be split into protocol operations,

consider the example shown in Figure 4.2a. The processing of an ACK frame
would likely be performed in its dedicated function. One of its sub tasks is the
computation of the RTT estimation, which is implemented in its own function
too. PQUIC keeps the same programming flow. As shown in Figure 4.2b, PQUIC
functions are wrapped by a protocol operation whose name describes its goal.
While the name of the protocol operation and the original function are similar,
the processing of ACK frames is linked to a more generic process_frame
operation taking “ACK” as parameter. As illustrated, a given protocol operation
can call other operations. Furthermore, protocol operations are split into three
anchors: pre, replace and post. Each anchor is a possible insertion point
for a pluglet. Protocol operations with parameters propose a specific set of
anchors for each parameter value. The replace anchor, consists of the actual
implementation of the operation. A default behaviour is usually provided by
the original QUIC implementation. Inserting code on the replace anchor
enables a pluglet to override this default behavior. Because it may modify the
connection context, inserting several pluglets on a replace anchor may cause
conflicts between the pluglets. Therefore, at most one pluglet can replace a
given protocol operation. If a second one tries to replace the same operation,
it will be rejected and the plugin it belongs to will be rolled back. The two
other anchors, pre and post, attach the plugin just before (resp. just after) the
protocol operation invocation. These modes are similar to the eBPF kprobes
in the Linux kernel [Ken+16]. By default, those are no-ops in PQUIC. Unlike
the replace anchor, any number of pre and post pluglets can be inserted
for a given protocol operation. However, they only have read access to the



4.1. Pluginizing QUIC 63

param_op[p1]

param_op[p2]

noparam_op2

Plugin A
M

em
ory

Plugin B
M

em
ory

built_in()

stack mem.
PRE

stack mem.
PRE

stack mem.
PREreplace

replace

replace

noparam_op1
built_in()

Figure 4.3: Attaching pluglets in replace mode to protocol operations.

connection context, protoop arguments and protoop outputs. The only write
accesses they have is to their pluglet stack and their own plugin-dedicated
memory. In the rest of the chapter, unless explicitly stated, we discuss pluglet
insertions in replace mode, and refer to pluglet inserted in pre and post
as passive pluglets.

4.1.3 Attaching Protocol Plugins

Implementing protocol extensions may require a combination of several plu-
glets forming a plugin. The PRE provides a limited instruction set and isolates
the bytecode from the host implementation. Therefore, plugins require an
interface with which they can operate on their connection. Moreover, a plugin
might need to share some state among its pluglets.

To address these needs, PQUIC is organized as illustrated in Figure 4.3.
As explained in the previous section, the behavior of a protocol operation is
either provided by a built-in function (e.g. param_op[p1] in Figure 4.3) or
overridden by a pluglet (e.g. noparam_op1). Plugins can also provide new
protocol operations absent from the original PQUIC implementation. This
can be done either by hooking a new parameter value for an existing protocol
operation (e.g. like param_op[p2]) or by adding a new protocol operation
(e.g. noparam_op2). PQUIC is thus extensible by design.

A Plugin Runtime Environment (PRE) is created for each inserted pluglet.
Each PRE contains its own registers and stack. The PRE heap memory points
to an area common to all pluglets of a plugin, as illustrated in Figure 4.3.
This link, ensured by the PQUIC implementation, provides pluglets with a
communication channel through shared-memory. In addition to the isolation
benefits, this architecture ensures that aggressive or ill memory management
only affects the plugin itself. Thanks to our PRE, pointer dereferencing is
restricted only to the pluglet stack or its plugin memory. In addition, pluglets
also need to communicate with the host implementation to interact with the
connection. Similarly to related work [AW18; Wir+19; Wir], PQUIC exposes



64 Chapter 4. PQUIC: towards really flexible transport protocols

Functions Usage
get/set Access/modify connection fields.

pl_malloc/pl_free Management of the plugin memory.
get_plugin_memory Retrieve a memory area shared by pluglets.
pl_memcpy/pl_memset Access/modify data outside the PRE
plugin_run_protoop Execute protocol operations.

reserve_frames Book the sending of QUIC frames.

Table 4.1: PQUIC API exposed to pluglet bytecode.

some functions to the PRE. These functions form an API that pluglets can use
(Table 4.1). We detail its six major operations below.

Exposing connection fields through getters and setters. Letting
plugins directly reference the fields of PQUIC structures makes the injected
code very dependent on PQUIC internals such as its memory layout. Consider
the case of two hosts with different PQUIC versions. If the newest version
added a new field to a structure being used by a pluglet, the offset contained
in its bytecode would point to a possibly different field, leading to undefined
behavior. Therefore, this interface abstracts the implementation internals
from the pluglets, making them compatible with different PQUIC versions or
implementations. In addition, it allows the PQUIC host to monitor and control
the fields accessed by the injected code. A host could thus reject plugins based
on the fields that it wishes to access. For example, a client could refuse plugins
that modify the Spin Bit, as it is not encrypted. Similarly, depending on its
local user policies, a host could accept or deny a plugin accessing the TLS
state.1

Managing plugin memory. Pluglets might need to keep persistent data
across calls. Therefore, we provide pl_malloc and pl_free to allocate and
free memory in the plugin dedicated area. Our framework dedicates a fixed-size
memory area split into constant size blocks [Ken12]. Such approach provides
algorithmic Θ(1) time memory allocation while limiting fragmentation.

Retrieving data shared by pluglets. Pluglets from the same plugin might
need to access a common data structure. Pluglets can assign an identifier to
a plugin memory area enabling them to retrieve and modify it consistently
using get_plugin_memory.

Modifying connection memory area. Plugins might need to modify
memory outside the PRE. For instance, a pluglet might need to write a new
frame inside a buffer. This can be done by using pl_memcpy and pl_memset.
The API keeps control on the plugin operations by ensuring the pluglets are
allowed to access the specified memory area.

Calling other protocol operations. This is required when a protocol op-

1We do not currently expose TLS keys to plugins.



4.1. Pluginizing QUIC 65

A

B C
(a) Without plugins.

A

B C
(b) With 𝑝1 plugin.

A

B C
(c) With 𝑝2 plugin.

A

B C
(d) With both 𝑝1 and 𝑝2 plugins.

Figure 4.4: Combining plugins requires protocol operation monitoring. (a),

(b) and (c) are valid calls graphs while (d) is not since it creates a loop between

𝐵 and 𝐶.

eration depends on another one and is done using the plugin_run_protoop
function. However, such a capability raises potential safety issues. As plug-
ins can call any protocol operation, a PQUIC implementation needs to take
care of possible infinite calling loops due to these calls. Keeping a loop-free
protoops call graph allows preventing such call loops. However, ensuring this
property for any combination of loop-free plugins is not practical to assess
before executing them due to the combinatorial state explosion. Consider the
example shown in Fig. 4.4. There are three protocol operations 𝐴, 𝐵 and 𝐶 , all
guaranteed to terminate. Even if both 𝑝1 and 𝑝2 plugins are legitimate, their
combination might introduce an infinite loop, as shown in Figure 4.4d. To
avoid this situation, a PQUIC implementation keeps track of all the currently
running protocol operations in the call stack. If a call is requested for an
operation that is already running, PQUIC raises an error.

Scheduling the transmission of QUIC frames. PQUIC provides a way
for pluglets to reserve a slot for sending frames using the reserve_frames
function. However, it should enforce two rules. First, plugins must not prevent
PQUIC from eventually sending application data. Therefore, as long as there
is payload data to be sent, standard QUIC frames such as STREAM, ACK and
MAX_DATA should have a guaranteed fraction of the available congestion
window. Second, a plugin sending many large frames such as a FEC plugin
should not be able to starve other plugins. Concurrently active plugins should
have a fair share of the sending congestion window. To achieve this, PQUIC in-
cludes a frame scheduler which is a combination of class-based queuing [FJ95]
and deficit round robin [SV96]. Frames are classified based on their origin,
either from the core implementation itself or from plugins. When both classes



66 Chapter 4. PQUIC: towards really flexible transport protocols

are pushing frames, the scheduler ensures that the core ones get a percentage
of the available congestion window. A deficit round robin scheduler then
distributes the remaining budget between the plugin frames.

4.1.4 Interacting with Applications

We showed how plugins can interact within PQUIC. Plugins can also interact
with the application using PQUIC. This allows them to extend the application-
facing interface of PQUIC to bring new functionalities. For example, a plugin
could implement a message mode for QUIC to supplement the standardized
ordered byte-stream or datagrams abstractions [RFC9000; RFC9221]. This
communication is established in a per-plugin bidirectional manner. First, an
application can call external protocol operations. These are new anchor points
that can be defined when injecting pluglets. The external mode is similar to the
replace anchor, but it makes the protocol operation only executable by the
application. This allows it to directly invoke new methods, e.g. queuing a new
message to send. Second, a plugin can asynchronously push messages back to
the application, so that it remains independent of the application control flow.
Interactions between the application and protocol plugins are used extensively
in Chapter 5.

4.2 Extending the loss recovery using protocol plugins

Several QUIC extensions were implemented with the PQUIC framework [De
+19]. Adding Forward Erasure Correction to the loss recovery mechanism is
probably the most substantial of them. Such an extension needs to update
a good part of the protocol behaviours and access and modify most of its
state. In order to encode and decode symbols, the FEC plugins additionnally
need to access the packets content. Being able to meet all these require-
ments demonstrates the flexibility of PQUIC. Finally, this extension is also
computationally-intensive and is therefore a good candidate for assessing the
performance impact of using protocol plugins.

We leverage the PQUIC framework to implement a flexible framework
inspired by QUIC-FEC from Chapter 2. Our plugin sends repair symbols to
enable PQUIC receivers to recover lost QUIC packets without waiting for
retransmissions and therefore meeting the delay constraints.

4.2.1 Design & implementation

Our FEC plugin allows plugging different FEC Frameworks: we implemented
block and sliding-window-based codes. These block and window frameworks
can be used interchangeably without modifying the base FEC plugin. The



4.2. Extending the loss recovery using protocol plugins 67

plugin adds several protocol operations and can be extended to change the
FEC framework and the underlying erasure-correcting code.

Our frameworks attach passive pluglets to the protocol operations that
send and receive QUIC packets. Each packet containing STREAM frames will
be protected by sending repair symbols later. On the receiver-side, the FEC-
protected packets are added to their respective FEC encoding window. The
missing packets of a window are recovered upon reception of repair symbols.

Similarly to QUIC-FEC discussed in Chapter 2, our FEC plugin defines the
REPAIR frame containing a repair symbol. The plugin also defines the FEC
ID frame that indicates that the packet payload is to be considered as a source
symbol and is protected by FEC. This replaces the FEC flag and the 32-bits
packet header added by QUIC-FEC in Chapter 2.

Using the new protocol operations added by our framework, we provide
two pluglets implementing different erasure correcting codes. The first one
implements a XOR code similar to the one proposed by Google [IT16]. It
is thus simple to compute and can be used on lightweight clients. It can
however only recover from the loss of a single packet, as only one repair
symbol can be generated from the same encoding window. The second code is
a Random Linear Code (RLC) [FLW06] where the repair symbols are generated
by computing a random linear combination between all the packets of the
encoding window. Compared to the XOR code, RLC is computationally heavier
but can recover from the erasure of more than one packet. However, its
recovery process, i.e. solving a system of linear equations whose unknowns are
the lost packets, is more computationally intensive. Other erasure-correcting
codes such as Reed-Solomon could easily be added by implementing new
pluglets.

Our FEC plugin also includes other protocol operations to customize its
behavior. One can choose between protecting the entire data transfer or only
the last packets of a stream by using different pluglets. The first mode is similar
to the behaviour of QUIC-FEC. The second mode can reduce the Download
Completion Time (DCT) of a bulk data transfer by recovering erasures oc-
curring during the last flight of packets while reducing the bandwidth usage
for repair symbols. In total, the FEC plugin defines 51 pluglets to define new
protocol behaviours and access specific QUIC anchor points.

4.2.2 Evaluation

In this section, we evaluate our FEC plugin in the In-Flight Communications
use-case discussed in Chapter 2. This evaluation follows an experimental de-
sign approach exploring the same network parameters range as in Chapter 2,
namely {𝑑1 ∈ [100, 400], 𝑏𝑤1 ∈ [0.3, 10], 𝑙1 ∈ [1, 8]}, based on the experimen-
tal results of Rula et al. [Rul+18]. Figure 4.2.2 compares the performance of



68 Chapter 4. PQUIC: towards really flexible transport protocols

10−1 100 101

DCTPQUIC−FEC
DCTPQUIC

0.00
0.25
0.50
0.75
1.00

CD
F

10−1 100 101

DCTPQUIC−FEC
DCTPQUIC

1.5 KB 10 KB 50 KB 1 MB

Figure 4.5: DCT ratio between PQUIC with and without the FEC plugin. Left:

only the end of stream is protected. Right: The whole stream is protected.

downloading a regular HTTP object with and without the FEC plugin. On
the left graph only the end of the data stream is protected (i.e., some repair
symbols are only sent at the end of the connection), while on the right graph
the whole data stream is protected, by sending 5 repair symbols every 25
source symbols. As we can see, there is a benefit in only protecting the end
of the stream for larger file transfers. Protecting the whole transfer requires
more bandwidth which negatively impacts the DCT. As discussed in Chapter 2,
packets lost in the middle of the transfer can be easily recovered through
classical retransmissions without significant impact on the DCT.

Only sending redundancy at the end of the transfer considerably lowers
the negative impact we saw with QUIC-FEC in Chapter 2 but still provides
latency improvements when last flight losses occur. This is a first example
showing that although the code rate is still fixed, adapting the redundancy
scheduling to the use-case is beneficial. The bulk transfers considered here do
not need a constant protection like real-time media communications would.
FEC mostly brings benefits here when last flight losses occur. Using protocol
plugins, applications can insert the plugins that suit their needs and finely
tune the loss recovery mechanism. This possibility is explored in details in
the next chapter.

4.2.3 Plugin Overhead

The balance between flexibility and raw performance is a classical trade-off.
Although Google measured that “QUIC’s server CPU-utilization was about
3.5 times higher than TLS/TCP” [IS18] back in 2018, QUIC itself was chosen
over TCP by Google due to its features and flexibility improvements. The
performance gap between TCP and UDP has since been reduced [Jae+23], with
some QUIC implementations reaching a rate of several Gigabits per second



4.2. Extending the loss recovery using protocol plugins 69

Plugin 𝑥 Goodput 𝜎/𝑥 𝑥 Load Time
PQUIC, no plugin 1104.2 Mbps 3.8% 0.0 ms

FEC XOR 516.6 Mbps 3.2% 11.71 ms
FEC RLC 187.4 Mbps 1.1% 11.21 ms

FEC XOR EOS 661.5 Mbps 3.2% 11.70 ms
FEC RLC EOS 648.0 Mbps 4.5% 11.22 ms

Table 4.2: Benchmarking plugins over 10Gbps links (20 runs).

on high-end CPUs, but TCP continues to provide significantly higher raw
performance results. As PQUIC delegates the execution of the plugins to the
PRE, the cost of its added flexibility is a processing overhead due to the JIT,
the runtime verifications performed the PRE at each memory access and the
utilization of the API to safely access PQUIC state variables.

Executing code in the PRE is less efficient than running native code. By
compiling source code to eBPF instead of classical ARM or x86 CPU architec-
tures, PQUIC renounces to most of their optimized instructions, such as SSE,
AVX or ARM NEON that could be used by a plugin such as FEC to provide
efficient computations. Finally, our get/set API is five times slower compared
to direct memory accesses, due to memory-safety checks performed by the
PRE at each call.

To observe this performance impact in bandwidth-intensive environments,
we benchmark our PQUIC implementation by measuring the completion time
of a 1 GB download between two servers with 10Gbps NICs running two Intel
Xeon E5-2640 v3 CPUs. Note that PQUIC is single-threaded and thus does not
benefit from the additional CPU cores.

Table 4.2 reports the median achieved goodput, its relative variance and
the plugin loading time for several variants of the FEC plugin. FEC XOR (resp.
FEC RLC) corresponds in the FEC plugins using the XOR (resp. RLC) erasure
correcting code. FEC XOR EOS and FEC RLC EOS are the variants of the plugin
only sending repair symbols protecting the end of the sent stream. PQUIC
alone achieves a median goodput of 1104.2 Mbps.

As can be seen on the table, the FEC plugin causes a significant drop
of performance. Two major factors affect this result. First, the specific FEC
scheme used impacts the computational cost, as RLC is more expensive than
XOR. On the RLC encoder, source symbols need to be multiplied by a coefficient
before they get XORed. Decoding is performed through gaussian elimination
which is a costly operation taking significantly more time as the number of
symbols to recover increases. Second, FEC introduces a bandwidth cost by
generating repair symbols over the network with the 5

6 code rate, limiting
the achieved goodput. Restricting their generation to the end of the stream
(EOS) reduces this cost but still nearly divides by two the achieved goodput.



70 Chapter 4. PQUIC: towards really flexible transport protocols

This performance degradation is the price of flexibility induced by the PQUIC
approach. Reducing the performance overead of FEC for QUIC can be done
with a native implementation using optimized CPU instructions. This is
explored in Chapter 7.

Inserting plugins takes time, as described in the last column of Table 4.2.
This time is proportional to the number of inserted pluglets and their com-
plexity. The instantiation of PREs is the major contributor to this loading
time. While not presented here, we developed a caching system for the PQUIC
plugins. If the host previously loaded the plugin in a completed connection,
caching allows it to reuse its PREs and load the plugin in less than 30`s instead
of 11ms.

4.3 Validating Plugins

PQUIC allows peers to directly echange the bytecode of the protocol plugins
to insert. Inserting arbitrary bytecode into the protocol implementation raises
security issues. Although not detailed in this thesis, the original PQUIC article
defines ways for peers to request proofs of the validity of protocol plugins when
receiving them over a QUIC connection [De +19; Ryb+21]. This validation is
carried out by agents called Plugin Validators. Validators can apply a range
of techniques, from manual inspection, privacy checks [Ege+11; Li+15], to
fuzzing [PAJ18] or using formal methods to validate the plugins submitted by
developers. Formal methods are attractive because they enable validators to
provide strong proofs for network protocols [Bis+05; BBK17; Chu+18].

A very important property for any code is its correct termination. If a pro-
tocol plugin would be stuck in an infinite loop with some specific input, then
it would obviously be unsafe to use it during a PQUIC connection. To demon-
strate the possibility of using formal techniques to validate protocol plugins,
we have used the state-of-the-art T2 [BK23; CPR06] automated termination
checker. This tool checks termination of programs written in the T2 language
implementing a counter example-guided abstraction refinement procedure.
This procedure builds on the seminal works on transition invariants (used to
characterize termination) [PR04] and predicate abstraction (used to simplify
the representation) [PR05] to build a proof of termination, or to disprove it. It
is a counter-example based approach starting from an abstracted version of
the system, and refining it until either no counter example to termination can
be found, or there is a clear proof that the system does not terminate.

Using the appropriate tools [Khl+15; LLV23], we checked the termination
of PQUIC pluglets by compiling their C source code to T2 programs. While
proving termination is often difficult and sometimes undecidable, we succeeded
to prove the termination of a good part of the pluglets written for PQUIC. The
T2 prover assumes the termination of external functions, i.e., functions of the



4.4. Conclusion 71

PQUIC implementation available through the PRE. We proved the termination
of most of the pluglets of the FEC plugin (37 pluglets out of 51 were proven
to be terminating), and the XOR erasure correcting code was proven to be
terminating in its entirety. To obtain those proofs, we had to slightly modify
the source code of some pluglets to ease the verification process of T2. For
example, we added an explicit size to null-terminated linked lists and used it
to bound the loops iterating over the lists. Since T2 can export its termination
proofs in files, these could be attached to the plugins to provide proof-carrying
code as proposed by Necula [Nec02].

With its use of formal verification in addition to running the code in a
sandboxed environnment, PQUIC improves its safety model one step further
than what is done by web browsers nowadays with their unverified execution
of Javascript and WebAssembly [Haa+17]. Recent research works have pro-
posed to follow a similar approach with formal verification of WebAssembly
code for the browser [Pro+19; Rao+23].

Our approach to PQUIC’s verification has however some limitations. First,
we limited ourselves to termination verification. Timeliness properties (i.e. the
fact that a plugin has to terminate in a reasonable time) were not explored. In
the kernel, eBPF ensures both these properties by limiting the size of a program
and the number of instructions an execution path can take. These limits were
low by the time of writing the PQUIC article (programs could not exceed 4096
instructions) and we made the choice of loading arbtrarily-sized programs,
verifying their termination through formal verification. Aside timeliness, the
correctness property was also left unexplored in the PQUIC article due to a
lack of time and resources. Some programming languages such as F* [Swa+16]
are explicitly designed to easily define and verify the programs specifications,
while others are extended with verification frameworks such as the recent
prusti for the Rust language [Ast+22]. PQUIC plugins could be written
using these tools before being compiled to eBPF, performing the verification
on the source code at compile-time, which is ofter easier than verifying the
bytecode itself.

4.4 Conclusion

After having explored a first time the extensibility of the QUIC loss recovery
with QUIC-FEC, we proposed in this chapter a general approach for extending
transport protocols. We presented Pluginized QUIC (PQUIC) a new extensi-
bility model composed of a set of protocol operations which can be enriched
or replaced by protocol plugins. These plugins are bytecodes executed by
a Protocol Runtime Environment that ensures their safety and portability.
The plugins can be dynamically loaded by an application that uses PQUIC or
received from a remote host thanks to PQUIC’s secure plugin management



72 Chapter 4. PQUIC: towards really flexible transport protocols

system. We showed in this chapter that a simple FEC extension can then be
built using this new extensibility model. PQUIC can be the starting point for a
new, modular version of QUIC. This would require the IETF to also specify
protocol operations to ensure the inter-operability of plugins among different
implementations. To achieve this, one must identify the minimal core protocol
operations required, similarly to what has been done when xBGP plugins
framework to several BGP implementations [Wir]. This set should be simple
enough to allow very different implementations, having possibly very specific
internal architectures such as zero-copy support, to inter-operate. Instead of
adding more and more features to a monolithic implementation, developers
could leverage the inherent extensibility of a pluginized protocol to develop a
simple set of kernel features that are easy to extend.



FlEC: application-tailored

loss recovery using

protocol plugins

5

With PQUIC in the previous chapter, we introduced a new way to extend the
QUIC protocol and showed the flexibility of the approach with a simple FEC
plugin. With this plugin, we showed that there is an interest in adapting the
redundancy scheduling to the underlying application. HTTP transfers do not
need a constant FEC protection throughout the whole download. Sending
repair symbols at the end of the transfers provides similar benefits to the ones
obtained with QUIC-FEC in Chapter 2 without the increased overhead. Yet,
this first plugin was simple and focused on bulk file transfers. This chapter
addresses other kinds of network transfers and explores further the possibilities
brought by the PQUIC paradigm. We propose a novel approach for providing
a truly flexible QUIC loss recovery mechanism. We adapt the redundancy
scheduling to the application’s needs and traffic pattern instead of limiting
ourselves to loss rate adaptation.

We design, implement and evaluate our Flexible Erasure Correction (FlEC)
framework built atop PQUIC. With FlEC, an application can easily select the
reliability mechanism that meets its requirements, from pure retransmissions
to various forms of FEC. We consider three different use cases: (𝑖) bulk data
transfers, (𝑖𝑖) transfers with restricted buffers and (𝑖𝑖𝑖) delay-constrained
messages such as real-time video communications. We demonstrate that
a modern transport protocol such as QUIC may benefit from application
knowledge by leveraging this knowledge in FlEC to provide better loss recovery
and stream scheduling. The article discussed in this chapter was published in
the April 2023 issue of IEEE/ACM Transactions on Networking [Mic+23a].

5.1 Introduction

While retransmissions currently remain the prevalent technique to recover
from packet losses in QUIC, we showed that coding techniques added to the
QUIC loss recovery mechanism could bring benefits for small bulk trans-
fers. QUIC being initially designed for the Web, bulk transfers constitute a
straightforward and representative example to experiment with. The previ-

73



74 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

ous chapters did not experiment with latency-sensitive applications such as
video-conferencing, where latency and responsiveness are more valued than
pure throughput. Traditionally, applications tend to use separate transport
protocols for their different requirements. TCP is generally preferred when
throughput and reliability are required while latency-sensitive applications
generally rely on UDP or RTP. For instance, while most browser applications
and websites rely on regular TCP and HTTP, web browsers provide the We-
bRTC protocol for real-time applications to meet their latency requirements.
WebRTC [RFC8825] itself relies on UDP, RTP and SCTP underneath. With
its large set of features, QUIC has nearly all the necessary mechanisms to
act as a multi-purpose protocol and welcome this class of latency-sensitive
applications, the exception being its loss recovery mechanism still fully based
on SR-ARQ. Supporting different applications having competing needs with a
FEC loss recovery mechanism complexifies the redundancy scheduling. Video-
conferencing applications may benefit from regularly sent repair symbols
while they deteriorate the quality of experience of bulk transfers due to good-
put reduction. The flexibility of PQUIC and the possibility to insert different
plugins for different applications opens new ways to ensure good transfer
performance for different applications. Our main contribution in this chapter
is our FlEC framework enabling applications to finely tune the transport loss
recovery mechanism to closely fit their needs. We implement our solution
entirely using QUIC and protocol plugins, but our ideas are generic and can be
applied to other protocols as well. We evaluate the flexibility of our techniques
through reproducible simulations and go beyond the simple bulk transfer
use-case considered until now. We show that our application-tailored loss
recovery mechanism outperforms one-size-fits-all SR-ARQ and FEC solutions.

This chapter is organised as follows. We first discuss how flexibility is
currently provided by existing transport solutions by tracking the network loss
characteristics (Section 5.2). We then present FlEC and its design. (Section 5.3).
We implement FlEC atop PQUIC (Section 5.4) and demonstrate the benefits
of this approach by studying three different use-cases (Sections 5.5-5.7) with
competing needs that can all improve their quality of experience using FlEC.

5.2 Adaptive Forward Erasure Correction

Sending repair symbols for delay-sensitive applications is done at the cost of
bandwidth when there is no loss to recover. This is why repair symbols should
be sent carefully to avoid consuming bandwidth with no or low additional
benefit. Some adaptive FEC mechanisms have been proposed to adjust the
redundancy overhead to the measured network loss rate. Both CTCP [Kim+12]
and TCP/NC [Sun+11] adjust the level of redundancy according to the esti-
mated average loss rate. rQUIC [Zve+21] proposes a similar idea. While these



5.2. Adaptive Forward Erasure Correction 75

approaches can show significant benefits compared to classical retransmission
mechanisms, they still increase the overhead compared to the more efficient
selective-repeat mechanisms in bulk transfer use-cases: every unused repair
symbol is a waste of bandwidth, similarly to spurious retransmissions. With
FlEC, we want to both react to the current channel conditions and adopt similar
behaviours to SR-ARQ when it is needed by the application requirements.

QUIC stacks are mostly implemented as libraries that can be used by a
wide range of applications. While QUIC can easily be tuned on the server-side
to better fit the use-case, obtaining such a flexibility on the end-user devices
is more complicated, as the application needs to tune the underlying stack
to meet its requirements. In the TCP/IP stack, this tuning is mainly done by
using socket options or system-wide parameters. Socket Intents [Sch+13]
and ongoing work [Pau+23] within the IETF TAPS working group show that
there is an interest to transfer some knowledge from the application to the
transport protocol. The QUIC specification [RFC9000] does not currently
define a specific API between the application and the transport protocol but
specifies a set of actions that could be performed by the application on the
streams (e.g. reading and writing data on streams) and on the connection
itself (e.g. switching on/off 0-RTT connection establishment or terminating the
connection). The QUIC specification allows the application to pass information
about the relative priority of the streams. However, it is still unclear how an
application could for instance express timeliness constraints.

On the other side, the IETF FEC specifications for QUIC we developed
during the course of this thesis [Swe+20b; MB22] do not guide the application
to choose a code rate nor which parts of the application data should be FEC-
protected and when coded symbols should be sent. Furthermore, different
applications may require different strategies to send redundancy. In a video-
conferencing application, repair symbols could protect a whole video frame.
An IoT application [Egg20] with limited buffers may want to protect the data
incrementally to ensure a fast in-order delivery despite losses.

In 2020, Cohen et al. proposed AC-RLNC [Coh+20]. This theoretical work
provided a joint coding scheme and algorithm in which one can manage the
delay-throughput tradeoff expressed by an application to get the required
QoS. However, this work was theoretical and not designed for a transport
protocol such as QUIC. Therefore, it did not cope with the complex and various
requirements of real applications, more specifically their traffic pattern or exact
time constraints. In this chapter, we start from the theoretical algorithms of
AC-RLNC. We join our forces with its authors and push further the idea
of adapting the redundancy scheduling to the application. We leverage the
flexibility of protocol plugins and implement our reliability mechanism as
a framework exposing two simple anchors points for applications to attach
plugins. Applications can redefine these anchors according to their delay-



76 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

sensitivity and traffic pattern. We explore three different use-cases and show
that adapting the reliability mechanism to the use-case can drastically improve
the quality of the transmission. The three next sections discuss the use-cases
considered in this chapter.

5.2.1 Bulk file transfer

We consider here the transfer of files under the assumption that the receive
buffer is large compared to the bandwidth-delay product of the connection.
This is the classical use case for many transport protocols. Current open-source
QUIC implementations use default receive window sizes that support such a
use-case. The receive window starts at 2 MBytes for locally-initiated streams
in picoquic [Hui+21]. The Chromium browser’s implementation [21] starts
with an initial receive window of 6MB per stream and 16MB for the whole
connection. Some QUIC clients such as curl [Curl] start with a small receive
window but allow it to grow throughout the connection. The metric that we
minimize in this scenario is the transfer completion time. This scenario also
includes REST API messages that often need to be completely transferred
in order to be processed correctly by the application. As already pointed
out [Fla+13; MDB19; Lan+17] and discussed in the previous chapters, a packet
loss during the last round-trip can have a high impact on the transfer comple-
tion time. The latter may indeed be more than doubled for small files due to
the loss of a single packet. Protecting these last-flight packets can drastically
improve the total transfer time at a cost significantly smaller than the cost
of simply duplicating all these packets. On the other hand, protecting other
packets than the tail ones with FEC can be harmful for the transfer completion
time as shown in Chapter 2. The packet losses in the middle of the transfer
can be recovered without FEC without any quiescence period provided that
the receiver uses sufficiently large receive buffers.

5.2.2 Buffer-limited file transfers

In numerous network configurations, the available memory on the end devices
is a limiting factor. It is common to see delays longer than 500 milliseconds
in satellite communications, while their bandwidth is in the order of several
dozens of Megabits per second [Tho+19; Kuh+20]. Furthermore, with the
expansion of the optical fiber and 5G networks, some devices will have access
to bandwidth up to 10Gbps [Rap+13; ARS16]. While the edge latency of 5G
infrastructures is intended to be in the order of a few milliseconds [3GP19], the
network towards the other host during an end-to-end transport connection
may be significantly higher. For instance, this can be due to the physical
distance between two hosts (transatlantic communications typically imply a
latency above a hundred of milliseconds) or bufferbloat on the network when



5.3. FlEC 77

proper AQM solutions [RFC8290] are still not deployed. Packet losses occur-
ring on those high Bandwidth-Delay Product (BDP) network configurations
imply a significant memory pressure on reliable transport protocols running
on the end devices. To ensure in-order delivery, the transport protocol needs
to keep the data received out-of-order during at least one round-trip-time,
requiring receive buffer sizes to grow significantly for each connection. At
the same time, QUIC is also considered for securing connections on IoT de-
vices [Egg20; KD19]. Those embedded devices cannot dedicate large buffers
for their network connections. Receive buffers that cannot bear the bandwidth-
delay product of the network they are attached to are unable to fully utilize its
capacity, even without losses. This typically occurs when the receive window
is smaller than the sender’s congestion window. Measurements show that
TCP receivers frequently suffer from such limitations [Lan+17]. The problem
gets even worse in case of packet losses as they prevent the receiver to deliver
the data received out-of-order to the application. Keeping the out-of-order
data in memory reduces the amount of new data that can be sent until the
lost data is retransmitted. Sacrifying a few bytes of the receiver memory in
order to handle repair symbols and protect the receive window from being
blocked upon packet losses can drastically improve the transfer time. In such
cases, FEC can be sent periodically along with non-coded packets during the
transfer and not just at the end of the transfer.

5.2.3 Delay-constrained messaging

Finally, we consider applications with real-time constraints such as video
conferencing. Those applications send messages (e.g. video frames) that need
to be successfully delivered within a short amount of time. The metric to
optimize is the number of messages delivered on-time at the destination.

FEC can significantly improve the quality of such transfers by recovering
from packet losses without retransmissions, at the expense of using more band-
width. Researchers have already applied FEC to video applications [CSA03;
Pur+01]. Some [CSA03] take a redundancy rate as input and allocate the repair
symbols given the importance of the video frame. Others [Pur+01] propose a
congestion control scheme that reduces the impact of isolated losses on the
sending rate. They then use this congestion control to gather knowledge from
the transport layer to the application in order to adapt the transmission to the
current congestion. We propose to directly transfer the application knowledge
in the transport protocol to automatically adjust its stream scheduler and
redundancy rate given the application’s requirements.



78 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

Transport Protocol (QUIC)

Delay-constrained messaging

PQUIC Framework

FlEC

ds() FECPattern() ds() FECPattern()

Bulk download

Figure 5.1: Design of the solution: a general framework with only two plug-

gable anchors to redefine the reliability mechanism given the use-case.

5.3 FlEC

In this section, we present the Flexible Erasure Correction (FlEC) framework.
FlEC starts from a theoretical work, AC-RLNC [Coh+20]. This previous work
proposes a decision mechanism to schedule repair symbols depending on
the network conditions and the feedback received from the receiver. In this
approach, repair symbols are sent in reaction to two thresholds: the first is
triggered as a function of the number of missing degrees of freedom by the
receiver (i.e. the number of symbols missing to perform FEC decoding), and
the second threshold sends repair symbols once every RTT. The original goal
of the proposed algorithm [Coh+20] is to trade bandwidth for minimizing the
in-order delivery delay of data packets.

We start from this idea of tracking the sent, seen and received degrees of
freedom as a first step to propose a redundancy scheduler for the transport
layer. However, while this first idea provides a general behaviour, this may be
insufficient for real applications with tight constraints that cannot be expressed
with AC-RLNC’s parameters. For example, a video-conferencing application
may prefer to maximize bandwidth over low-delay links and therefore rely on
retransmissions only, while FEC is needed over high-delay links as such re-
transmissions cannot meet the application’s delay constraints. The principles
of FlEC are illustrated in Figure 5.1. Instead of proposing configurable constant
thresholds to tune the algorithm, we make it dynamic by proposing two rede-
finable functions: 𝑑𝑠 () (for “delay-sensitivity”) and 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛(). These two
functions can be completely redefined to instantiate a reliability mechanism
closely corresponding to the use-case. This allows having completely different
FEC behaviours for use-cases with distinct needs such as HTTP versus video-
conferencing. The 𝑑𝑠 () threshold represents the sensitivity of the application



5.3. FlEC 79

𝑙 the estimated uniform loss rate
𝑟 the estimated receive rate

𝑃𝐺𝐵 , (resp. 𝑃𝐵𝐺 ) the estimated transition probability from the
GOOD to the BAD (resp. BAD to GOOD) state
of a Gilbert loss model [Ell63]

𝑚𝑑 missing degrees of freedom
𝑎𝑑 added degrees of freedom
𝑑𝑠 () customizable threshold eliciting repair symbols

given the application’s delay sensitivity
𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() customizable condition to send FEC using the

application’s traffic pattern

Table 5.1: Definition of the different symbols.

to the in-order delivery delay of the sent data. In AC-RLNC, the FEC scheduler
sends redundancy once per RTT. In FlEC, the 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() dynamic func-
tion allows triggering the sending of FEC at specific moments of the transfer
depending on the application’s traffic pattern. Sending FEC for every RTT
may deteriorate the application performance, especially when the delay is
low enough to rely on retransmissions only. Having a dynamic 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛()
function avoids this problem. For instance, in a bulk transfer scenario, it can
trigger FEC at the end of the transfer only and rely on retransmissions other-
wise. For video transfer, it can trigger FEC after each video frame is sent. In
FlEC, the SR-ARQ mechanism used by QUIC is a particular case among many
other possibilities. Algorithm 1 shows our generic framework and Table 5.1
defines the variables used by our algorithms. We implement FlEC using PQUIC
and define 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() and 𝑑𝑠 () as protocol operations. However, the same
principles can be applied without PQUIC with the application redefining the
operations natively thanks to the user-space nature of QUIC. This will be
explored in Chapter 7.

The 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑀𝑑 function computes the number of missing degrees (𝑚𝑑)
of freedom (i.e. missing source symbols) in the current coding window. The
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑑 function computes the number of added degrees (𝑎𝑑) of freedom
(i.e. repair symbols) that protect at least one packet in the current coding
window. Compared to AC-RLNC, we only consider in-flight repair symbols in
𝑎𝑑 to support retransmissions when repair symbols are lost. The higher the
value returned by 𝑑𝑠 (), the more likely it is to send repair symbols prior to the
detection of a lost source symbol and the more robust is the delay between the
sending of the source symbols and their delivery to the application. The extra
cost is the bandwidth utilization. Sending repair symbols a priori occupies
slots in the congestion window and is likely to increase the delay between the



80 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

Algorithm 1 Generic redundancy scheduler algorithm. The 𝑑𝑠 () and
𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() thresholds are redefined by the underlying application. The
algorithm is called at each new available slot in the congestion window.
Require: 𝑙 , the estimated loss rate.
Require: 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 , the most recent feedback received from the peer.
Require: 𝑊 , the current coding window.

1: 𝑟 ← 1 − 𝑙
2: 𝑎𝑑 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑑 (𝑊 )
3: 𝑚𝑑 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑀𝑑 (𝑊 )
4: if 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = ∅ then

5: if FECPattern() then
6: return 𝑁𝑒𝑤𝑅𝑒𝑝𝑎𝑖𝑟𝑆𝑦𝑚𝑏𝑜𝑙

7: else

8: return 𝑁𝑒𝑤𝐷𝑎𝑡𝑎

9: end if

10: else

11: updateLossEstimations(feedback)
12: if FECPattern() then
13: return 𝑁𝑒𝑤𝑅𝑒𝑝𝑎𝑖𝑟𝑆𝑦𝑚𝑏𝑜𝑙

14: else if 𝑟 − 𝑚𝑑
𝑎𝑑

< 𝑑𝑠 () then
15: return 𝑁𝑒𝑤𝑅𝑒𝑝𝑎𝑖𝑟𝑆𝑦𝑚𝑏𝑜𝑙

16: else

17: return 𝑁𝑒𝑤𝐷𝑎𝑡𝑎

18: end if

19: end if



5.3. FlEC 81

Use-case 𝑑𝑠 () 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛()
Bulk transfer (SR-ARQ) −𝑙 𝑓 𝑎𝑙𝑠𝑒

AC-RLNC [Coh+20] 𝑐 · 𝑙 𝑡𝑟𝑢𝑒 every RTT
Bulk transfer −𝑙 𝑎𝑙𝑙𝑆𝑡𝑟𝑒𝑎𝑚𝑠𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ()

Buffer-limited bulk 𝑐 · 𝑙 Algorithm 2
Messaging −𝑙 Algorithm 4

Table 5.2: Definition of 𝑑𝑠 () and 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() for the considered use-cases.

generation of data by the application and their actual transmission. Setting
𝑑𝑠 () to −𝑙 in Algorithm 1 triggers the transmission of repair symbols only in
reaction to a newly lost source symbol, implementing thus a behaviour similar
to regular QUIC retransmissions. In this chapter, retransmissions are done
using repair symbols to illustrate that the approach is generic, but classical
uncoded retransmissions can be used for better performance without loss of
generality. 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() allows regulating the transmission of a priori repair
symbols regardless of the channel state, in contrast with AC-RLNC [Coh+20]
where this threshold is triggered once per RTT.

Table 5.2 describes how 𝑑𝑠 () and 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() can be redefined to repre-
sent reliability mechanisms that fit the studied use-cases. The first row of the
table shows how to implement the classical default QUIC SR-ARQ mechanism
using FlEC. The second one implements the behaviour of AC-RLNC [Coh+20],
with 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() being triggered once every RTT according to the origi-
nal alogrithm. The third one is tailored for the bulk use-case: 𝑑𝑠 () is set to
send repair symbols only when there are missing symbols at the receiver and
𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() sends repair symbols when there is no more stream data to
send. The two other rows are explained in details in the next sections. In this
Table, 𝑐 is a non-negative user-defined constant. The higher 𝑐 is, the more
sensitive we are to the loss rate deviation.

5.3.1 Comparing FlEC and previous work

The origin of FlEC comes from both the shortcomings of AC-RLNC [Coh+20]
and QUIC-FEC. FlEC shares with AC-RLNC the idea of tracking the state of
the communication in terms of received, seen and lost symbols. However, it
adds the tight and diverse application requirements to the loop in order to
adopt a correct behaviour for use-cases where FEC can be beneficial. It also
adds all the transport-layer considerations such as being fair to the congestion
control of the protocol upon loss recovery.

FlEC also builds upon QUIC-FEC as it integrates similar transport layer
considerations. For instance, FlEC uses a similar wire format as well as the
concept of RECOVERED frame in order to differentiate packet acknowledge-



82 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

ments from symbol recoveries. However, QUIC-FEC was designed without
consideration for the application traffic pattern or channel condition: the
packet redundancy was not adaptive at all.

5.4 Implementation

FlEC is composed of two parts. First, the general FlEC framework allows
defining reliability mechanisms in a flexible way. This part is generic and is
not intended to vary. The second part contains the 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() and 𝑑𝑠 ()
operations. These operations are designed to vary depending on the use-case,
so the app can redefine them based on their requirements.

We implement our FlEC framework inside PQUIC. We address the three
use-cases discussed in this article by redefining 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() and 𝑑𝑠 () to sup-
port the adequate reliability mechanism for each of them. Similarly to previous
chapters, we rely on Random Linear Codes for the encoding and decoding of
the symbols. This choice is made out of implementation convenience although
other error correcting codes can be used as encoding/decoding tools with only
little adaptation. Simpler codes such as Reed-Solomon can provide benefits
for the considered use-cases although the benefit may be lower: simple block
codes cannot mix the repair symbols of different generations conversely to
random linear codes.

Our implementation of FlEC starts from the FEC plugin proposed in the
previous chapter. We enhanced the 𝐺𝐹 (28) RLC implementation to use dedi-
cated CPU instructions and added an online system solver for faster symbols
recovery. Most of the FlEC protocol operations consist in providing a shim
layer between the PQUIC packet loop and the FlEC symbols scheduling algo-
rithm.

The whole FlEC framework implementation spans 8200 lines of code. It
adds a complete FEC extension to the QUIC protocol with the RLC error
correcting code using PQUIC protocol plugins. This code is generic and does
not have to be redefined by any application. The codes needed to define 𝑑𝑠 ()
and 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() for the bulk and buffer-limited use-cases have been written
with respectively 57 and 97 lines of C code while the code for the messaging
use-case takes 335 lines of C code. These two small functions are the parts
that can be redefined by each application to stick to its use-case.

5.5 Bulk file transfers

We here present the implementation and evaluation of the loss recovery mech-
anism proposed for bulk file transfers. The metric to minimize is the total
transfer completion time. Sending unneeded repair symbols reduces the good-
put and increases the transfer completion time. The expected behaviour is



5.5. Bulk file transfers 83

therefore similar to SR-ARQ with last flight protection. The repair symbols
are always sent within what is allowed by the congestion window, meaning
that FlEC does not induce any additional link pressure.

5.5.1 Bulk loss recovery mechanism

For a file transfer, we set the delay-sensitivity threshold to be equal to −𝑙 . The
formula triggering the sending of repair symbols (line 17 of Algorithm 1) thus
becomes the following.

𝑟 − 𝑚𝑑
𝑎𝑑

< −𝑙 → 𝑠𝑒𝑛𝑑𝑅𝑒𝑝𝑎𝑖𝑟𝑆𝑦𝑚𝑏𝑜𝑙 () (5.1)

Substituting 𝑙 by (1 − 𝑟 ) in Equation 5.1, we can rewrite it as

𝑚𝑑
𝑎𝑑

> 1→ 𝑠𝑒𝑛𝑑𝑅𝑒𝑝𝑎𝑖𝑟𝑆𝑦𝑚𝑏𝑜𝑙 () (5.2)

so that we send repair symbols only when a symbol is missing and has not
been protected yet. The transmission of a repair symbol triggered by this
threshold increases 𝑎𝑑 by 1 until 𝑎𝑑 becomes equal to𝑚𝑑 . Using the threshold
defined in Equation 5.1 ensures a reliable delivery of the data but does not im-
prove the transfer completion time in the case of tail losses. 𝑚𝑑 only increases
after a packet is marked as lost by the QUIC loss detection mechanism. The
𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() operation controls the a priori transmission of repair symbols.
In contrast with the previous solution [Coh+20], we redefine 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛()
and set it to 𝑡𝑟𝑢𝑒 only when all the application data has been sent instead of
setting it to 𝑡𝑟𝑢𝑒 once per RTT. This implies that only the last flight of packets
will be protected. All the previous flights will be recovered through retrans-
missions triggered by Equation 5.2. We track the loss conditions throughout
the transfer and trigger the 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() threshold according to the observed
loss pattern. This loss-rate-adaptive approach is especially beneficial when
enough packets are exchanged to accurately estimate the loss pattern. This
occurs when the file is long or when loss information is shared among connec-
tions with the same peer. When a sufficient number of repair symbols are sent
to protect the expected number of lost source symbols, the algorithm keeps
slots in its congestion window to transmit new data. Another approach would
be to define 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() to use all the remaining space in the congestion
window to send repair symbols, with the drawback of potentially consuming
more bandwidth than needed.

5.5.2 Evaluation FlEC for the bulk scenario

We evaluate FlEC with the 𝑑𝑠() and 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() protocol operations defined
for this specific use-case. We base our implementation on PQUIC on commit



84 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

Host Server

DCE DCE

ns-3

{delay, bw, losses}

Figure 5.2: Experimental topology using NS-3 with Direct Code Execution.

68e61c5 [PquicRepo]. We perform a large number of experiments and compare
it with the regular QUIC loss recovery mechanism without plugins. We use ns-
3 [RH10] version 3.33 along with the Direct Code Execution (DCE) [Cam+14]
module. The DCE module allows using ns-3 with the code of a real implemen-
tation in a discrete time environment. This means that the actual code of the
QUIC and FlEC implementations is running and that the underlying network
used by the implementation is simulated by ns-3, making the experiments
fully reproducible while running real code. Figure 5.2 shows the experimental
setup. We use ns-3’s packet erasures models to generate reproducible loss
patterns with different seeds, representing both uniform and bursty losses.
We configure the network queues to 1.5 times the bandwidth-delay product.

Although congestion control is orthogonal to our proposed loss recovery
mechanism, the Reno [RFC6582] and Cubic [HRX08] congestion control al-
gorithms supported by PQUIC suffer from bandwidth underestimation under
severe loss conditions. We thus perform experiments using the BBRv1 [Car+17]
congestion control algorithm. BBR avoids underestimating the network band-
width upon packet losses as it directly looks at the receive rate and delay
variation during the transfer. As discussed earlier, other congestion control
algorithms [Car+16b; BOP94] use other signals than packet losses to detect
congestion. They are not explored in this chapter as it would require to imple-
ment them from the ground-up and validate their behaviour, which is out of
scope for this thesis.

5.5.2.1 Experimental design

We evaluate the bulk use-case by sending files of several sizes and first see
how FlEC compares with QUIC using its regular loss recovery mechanism. For
this evaluation, we rely on an experimental design similarly to what we did
in the evaluation of Chapters 2 and 4. We use the WSP [SCS12] space-filling
algorithm to cover the parameters space with 95 points. One experiment is
run for each point in the parameters space.

Figure 5.3 shows the CDF of the Transfer Completion Time (TCT) ratio



5.5. Bulk file transfers 85

0.25 0.5 0.75 1 1.33 2 4
TCTFlEC
TCTQUIC

0

0.25

0.5

0.75

1

CD
F

bw ∈ [1, 30]Mbps, loss ∈ [0.1, 8]%, RTT ∈ [10, 200]ms

10kB
40kB
100kB
1MB
10MB

Figure 5.3: TCT ratio for bulk use-case using BBR. 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() and 𝑑𝑠 ()
ensure that repair symbols only protect the tail of the file.

between FlEC and picoquic [Hui22a] used as our reference QUIC implemen-
tation. The experiments consist in the transfer files of size 10kB, 40kB, 100kB,
1MB and 10MB. For each file size, 95 experiments are run using experimental
design. 40kB and 100kB are the average response sizes for Google Search
on mobile and desktop devices in 2017 [Lan+17]. The explored parameters
space is described on top of the Figure. The loss rate varies between 0.1% and
8% to cover both small loss rates and loss rates experienced under intense
network conditions such as In-Flight Communications [RBC16]. The round-
trip-time varies between 10ms and 200ms. As shown in the Figure, 𝑑𝑠 () and
𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() implement here a bulk-friendly loss recovery mechanism. By
automatically protecting the tail of the transferred file, we obtain the beneficial
results of QUIC-FEC (Chapter 2) without the overhead drawbacks, similarly
to Chapter 4. A few of the experiments with 40 and 100kB files provided
poorer results compared to QUIC. With those file sizes, FlEC uses one more
stream frame to transmit the data, needing in some rare cases one additional
round-trip to transmit this additional packet. While not shown graphically in
this chapter, replacing BBR by Cubic [HRX08] provides similar results.

Figure 5.4 compares FlEC with an implementation of AC-RLNC [Coh+20]
following Table 5.2. We observe that FlEC still outperforms AC-RLNC as
sending repair symbols every RTT consumes too much bandwidth for the bulk
use-case. FlEC only sends repair symbols a priori for the last flight of packets,
relying on retransmissions for all the other packets as their retransmission
arrives before the end of the transfer. This shows the benefits of using the con-
figurable 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() operation compared to AC-RLNC’s default behaviour,
since sending repair symbols regularly still brings benefits for the following
studied use-cases.



86 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

0.25 0.5 0.75 1 1.33 2 4
TCTFlEC

TCTAC−RLNC

0

0.25

0.5

0.75

1

CD
F

bw ∈ [1, 30]Mbps, loss ∈ [0.1, 8]%, RTT ∈ [10, 200]ms

10kB
40kB
100kB
1MB
10MB

Figure 5.4: TCT ratio between FlEC and AC-RLNC [Coh+20] for regular bulk

use-case using the BBR congestion control.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Transfer Completion Time (seconds)

0.00

0.25

0.50

0.75

1.00

CD
F

FlEC
QUIC

Figure 5.5: TCT comparing FlEC and the regular QUIC for transfers with at

least one packet loss, performed on a real Starlink network access.

5.5.2.2 Experimenting with a real network

We now extend our study and analyze the benefits of FlEC over a real network
between a regular QUIC and FlEC server on a Ubuntu 18.04 server located at
UCLouvain and a client wired to a Starlink access point located in Louvain-
la-Neuve (Belgium). We performed a total of 20150 uploads of 50kB from the
client to the server. Among those 20150 uploads, 430 encountered at least
one packet loss during the transfer. Figure 5.5 shows the CDF of the transfer
completion time for these 430 uploads. The median transfer completion time is
247ms for FlEC and 272ms for regular QUIC. The average transfer completion
time is 340ms for FlEC and 393ms for QUIC. Unsurprisingly, FlEC improves
the transfer completion time for the transfers where the loss events occur
during the RTT.



5.6. Buffer-limited file transfers 87

0.10 0.15 0.20 0.25 0.30
Transfer Completion Time (seconds)

0.00

0.25

0.50

0.75

1.00

CD
F

FlEC
QUIC

Figure 5.6: TCT comparing FlEC and the regular QUIC for all transfers, per-

formed on a real Starlink network access.

5.5.2.3 CPU performance

While it has been demonstrated that PQUIC protocol plugins deteriorate
noticeably the performance [De +19], we analyze the CPU impact of the FlEC
framework by first transferring 1GB files on the loopback interface. Without
FlEC, we achieved a throughput of 650 Mbps. With FlEC configured for the
bulk use-case (i.e. sending repair symbols at the end of the transfer only), it
dropped to 300 Mbps. We also analyzed the throughput when sending one
repair symbol every ten source symbols and obtained a throughput (i.e. not
goodput) of 280 Mbps, meaning that the encoding and decoding of repair
symbols implies only a small overhead compared to the framework in itself.
This performance drop has an impact on transfers that were not affected by
last flight losses. To illustrate this impact, we can look at the transfers we
performed using our Starlink access point.

Figure 5.6 shows the CDF of the TCT for all the transfers we performed,
with and without losses. We can see that when we consider all transfers,
FlEC increases the transfer completion time outside simulations, due to that
performance overhead. This is a current limitation of the PQUIC paradigm:
the price for this flexibility is a computational overhead due to the protocol
plugins system. These observations are inline with earlier discussions on
PQUIC performance. We believe that with a native implementation, the impact
of the FlEC framework would be barely noticeable. We will see in Chapter 7
how we can get rid of this performance drop using a native and efficient
implementation.

5.6 Buffer-limited file transfers

We now discuss the loss recovery mechanism for buffer-limited file transfers.
In this setup, the receive window (rwin) is relatively small compared to the



88 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

congestion window (cwin) of the sender, making every loss event potentially
blocking and increasing the transfer completion time. In addition to protecting
the transfer from tail losses, we protect every window of packets to avoid
stalling due to lost packets blocking the stream flow-control window.

5.6.1 Loss recovery mechanism

For this use-case, 𝑑𝑠 () returns 𝑙 to ensure that 𝑎𝑑 stays larger than𝑚𝑑 , accord-
ing to the estimated loss rate. 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() behaves as shown in Algorithm 2.
We spread the repair symbols along the sent source symbols in order to peri-
odically allow the receiver to unblock its receive window by recovering the
lost source symbols and deliver the stream data in-order to the application.
More precisely, the 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() operation sends one repair symbol every
1
𝑙

source symbols. The algorithm needs three loss statistics. The first is the
estimated uniform loss rate 𝑙 . The two others are the 𝑃𝐺𝐵 and 𝑃𝐵𝐺 parameters
of the Gilbert loss model. The Gilbert model [Ell63] is a simplification of the
two-states Markov model already used in the evaluation of Chapter 2. In
the Good state of the Gilbert model, all the packets are received while all the
packets are dropped in the Bad state. The model only contains state-transition
parameters. The packet drop probabilities for the Good and Bad state are
respectively fixed to 1 and 0. 𝑃𝐺𝐵 is the transition probability from the Good to
the Bad state while 𝑃𝐵𝐺 is the transition probability from the Bad to the Good
state. In order to estimate the loss statistics 𝑙 , 𝑃𝐺𝐵 and 𝑃𝐵𝐺 , we implement a
loss monitor protocol plugin that estimates the loss rate and Gilbert model
parameters over a QUIC connection.

When the sender is blocked by the QUIC flow control, 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() sends
more repair symbols to recover from the remaining potentially lost source
symbols. Spreading the repair symbols along the coding window helps to
recover the lost source symbols more rapidly compared to a block approach.

5.6.2 Evaluation

We now evaluate our generic mechanism under a buffer-limited file transfer
use-case. We first study a specific network configuration that could benefit
from FlEC. We then evaluate its overall performance using experimental
design.

5.6.2.1 FlEC for SATCOM

We choose the satellite communications (SATCOM) use-case where the delay
can easily reach several hundreds of milliseconds [Tho+19; Kuh+20]. In those
cases, end-hosts need a large receive buffer in order to reach the channel



5.6. Buffer-limited file transfers 89

Algorithm 2 FECPattern for buffer-limited use-case
Require: 𝑙𝑎𝑠𝑡 , the ID of the last symbol present in the coding window when

𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() was triggered the last time
Require: 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 , the number of times FECPattern() has already been

triggered since no new symbol was added to the window.
Require: 𝑚𝑎𝑥𝑇𝑟𝑖𝑔𝑔𝑒𝑟 , the maximum number of times we can trigger this

threshold for the same window
Require: 𝑛𝑅𝑆𝐼𝑛𝐹𝑙𝑖𝑔ℎ𝑡 , the number of repair symbols currently in flight
Require: 𝑊 , the current coding window.
Require: 𝐹𝐶𝐵𝑙𝑜𝑐𝑘𝑒𝑑 (), telling us if we are currently blocked by flow control.
Require: 𝑙 , 𝑃𝐺𝐵 , 𝑃𝐵𝐺 , see Table 5.1.

1: if 𝑛𝑅𝑆𝐼𝑛𝐹𝑙𝑖𝑔ℎ𝑡 ≥ 2 ∗ ⌈|𝑊 | ∗ 𝑙⌉ then
2: return 𝑓 𝑎𝑙𝑠𝑒 {Wait for feedback before sending new RS}
3: end if

4: 𝑛𝑈𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ←𝑊 .𝑙𝑎𝑠𝑡 − 𝑙𝑎𝑠𝑡
5: 𝑛 ←𝑚𝑖𝑛( 1

𝑃𝐺𝐵
, |𝑊 |)

6: 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 ← 𝑛𝑈𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 = 0 ∨ 𝑛𝑈𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ≥ 𝑛 ∨ 𝐹𝐶𝐵𝑙𝑜𝑐𝑘𝑒𝑑 ()
7: if 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 ∧ 𝑛𝑈𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ≠ 0 then

8: {Start repair symbols sequence}
9: 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 ← 1

10: 𝑙𝑎𝑠𝑡 ←𝑊 .𝑙𝑎𝑠𝑡

11: 𝑚𝑎𝑥𝑇𝑟𝑖𝑔𝑔𝑒𝑟 ← ⌈𝑚𝑎𝑥 (𝑙 ∗ 𝑛𝑈𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑, 1
𝑃𝐵𝐺
)⌉

12: else if 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 then

13: if 𝐹𝐶𝐵𝑙𝑜𝑐𝑘𝑒𝑑 () ∨ 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 < 𝑚𝑎𝑥𝑇𝑟𝑖𝑔𝑔𝑒𝑟 then

14: 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 ← 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 + 1 {Continue sending symbols}
15: else

16: 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 ← 𝑓 𝑎𝑙𝑠𝑒 {Enough symbols have been sent}
17: end if

18: end if

19: return 𝑝𝑟𝑜𝑡𝑒𝑐𝑡



90 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

0.07 0.15 0.25 0.4 1 3
Receive window size (MB)

0.75
0.9

1.11
1.33

TC
T F

lE
C

TC
T Q

UI
C

RTT = 400ms, bw = 8Mbps, loss = 0.5%

Figure 5.7: TCT ratio, 0.5% losses.

0.07 0.15 0.25 0.4 1 3
Receive window size (MB)

0.75
0.9

1.11
1.33

TC
T F

lE
C

TC
T Q

UI
C

RTT = 400ms, bw = 8Mbps, loss = 2%

Figure 5.8: TCT ratio, 2% losses.

capacity. If they do not use a sufficiently large buffer, packet losses can have a
significant impact on the throughput, preventing the sender to send new data
as long as the data at the head of the receive buffer have not been correctly
delivered to the application. The studied network configuration has a round-
trip-time of 400 milliseconds and a bandwidth of 8 Mbps. Those are lower-
bound values compared to current deployments [Kuh+20; Tho+19]. The
bandwidth-delay product is thus 400kB. Higher BDP configurations are studied
in the experimental design analysis of Section 5.6.2.2. We study the impact of
FlEC with several receive window sizes.

5.6.2.1.1 Transfer completion time and throughput. Figure 5.7 shows
the transfer completion time ratio between FlEC and regular QUIC with a 5 MB
file transfer and 0.5% of packet loss. Each box in the graph is computed from
95 runs with different seeds for the ns-3 rate error model. The bandwidth is set
to 8 Mbps and the congestion control is BBR. For each transfer using FlEC, we
decrease the receive window by 5% at the receiver in order to store the received
repair symbols in the remaining space. With receive windows smaller than the
BDP (ranging from 70 kB to 400 kB), the sender is flow-control-blocked once
per RTT during a time proportional to the 𝑟𝑤𝑖𝑛

𝑐𝑤𝑖𝑛
ratio. This implies that the

transfer completion time with small receive windows is large even without any
packet loss. Furthermore, the earlier the loss occurs during the round-trip, the
longer the sender will be blocked by the flow control for the next round-trip,



5.6. Buffer-limited file transfers 91

1.04 1.06 1.08 1.10
Bytes overhead

25000

30000

35000
TC

T
(m

s)

RTT = 400ms, BW = 8Mbps, loss = 2%, rwin=150kB

FlEC
QUIC

Figure 5.9: Time-bandwidth tradeoff, 2% losses.

1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16
Bytes overhead

7000

7500

8000

TC
T

(m
s)

RTT = 400ms, BW = 8Mbps, loss = 0.5%, rwin=6MB

FlEC
QUIC

Figure 5.10: Time-bandwidth tradeoff, 0.5% losses.

since it needs to retransmit the data to unblock the receive window. Sending
a priori repair symbols for these configurations allows reducing or completely
avoiding those blocking situations, at the price of a small reduction in goodput.
For the 70 kB receive window, the 5% reduction to store the repair symbols is
significant compared to the benefits of FEC and has a negative impact on the
goodput. With the 400 kB receive window and above, the sender only blocks
in the presence of losses during the round-trip. For the 3MB receive window,
sending repair symbols a priori does not unblock the window but still helps
to recover from tail losses. With such a high RTT, the impact of a tail loss
relative to the transfer completion time is still significant.

Figure 5.8 shows the results of our experiments with a 2% packet loss rate.
It is thus more common that the sender becomes flow-control blocked due
to the increased loss rate. This makes the approach worth even for smaller
receive window sizes such as 70kB as the sender will be slowed down a lot
more often.

5.6.2.1.2 Delay-bandwidth tradeoff. The graph on Figure 5.9 illustrates
the delay-bandwidth tradeoff operated when using FlEC instead of regular
QUIC. Each point on the Figure concerns a single experiment and represents
the transfer completion time and the bytes overhead of the solution. The bytes
overhead is computed by dividing the total amount of bytes of UDP payload



92 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

0.25 0.5 0.75 1 1.33 2 4
TCTFlEC
TCTQUIC

0.0

0.5

1.0

CD
F

RTT ∈ [10, 400]ms, bw ∈ [1, 30]Mbps, loss ∈ [0.1, 3]%

150kB
250kB
400kB
700kB
3MB

Figure 5.11: Experimental design analysis for several receive window config-

urations.

sent by the server by the size of the file transferred (5MB). For this graph, the
experiments use a small receive window of 150kB and the loss rate is 2%. As
the receive window is small, sending FEC unblocks the receive window upon
losses and allows drastically lowering the transfer completion time. The price
to pay is an increased bytes overhead compared to the regular QUIC solution.
In this rwin-limited scenario, the available bandwidth is generally larger than
what is used due to the rwin restriction.

Figure 5.10 shows experimental results with the opposite scenario: the
receive window is 6MB large, which is larger than both the file to transfer
and the bandwidth-delay product of the link. This case is similar to the bulk
use-case of section 5.5. We can see that FlEC leads to stable latency results at
the expense of a larger bytes overhead than QUIC. As the receive window is
larger than the file to transfer, the sender will never be flow-control blocked
during the transfer. In this case, FlEC minimizes the latency essentially by
recovering from tail losses.

5.6.2.2 Experimental design analysis

Figure 5.11 shows the aggregated results of simulations using experimental
design. We show the CDF of the transfer completion time ratio between
FlEC and QUIC. Each CDF on the Figure is built from 95 experiments with
parameters selected from the ranges depicted on the top of Figure 5.11. Each
CDF curve corresponds to transfers using the receive window size specified in
the legend. The congestion control used is still BBR. We observe positive results
using FlEC for the majority (75%) of the network configurations, especially
for smaller receive window sizes (80% positive results for windows smaller or
equal to 400kB). Some configurations still expose negative results using FlEC,



5.7. Delay-constrained messaging 93

0.5 0.75 1 1.33 2
TCTFlEC
TCTQUIC

0.0

0.5

1.0

CD
F

RTT ∈ [10, 400]ms, bw ∈ [1, 30]Mbps, 𝐺𝑝 ∈ [0.1, 1.5]%

150kB
250kB
400kB
700kB
3MB

Figure 5.12: Experimental design analysis using Gilbert model with bursts of

1 to 5 packets.

even for smaller receive window sizes. These configurations are those whose
bandwidth-delay product is small compared to the receive window. To verify
this, we computed the average 𝐵𝐷𝑃

𝑟𝑤𝑖𝑛
ratio on all the experiments for which

FlEC took more time to complete than picoquic, whose value is 0.48. For
the experiments where the FlEC transfer was faster, the average value of this
ratio is 1.53.

Let us now assess the performance of our solution using a bursty loss
model in order to see whether FlEC remains robust even in the presence of
loss bursts. Figure 5.12 shows the results of an experimental design analysis
with a Gilbert loss model with 𝑃𝐺𝐵 ranging from 0.1% to 1.5% and 𝑃𝐵𝐺 set to
33% (i.e. an expected burst size of 3 packets) and a maximum burst size of 5
packets. Loss events thus occur less often compared to Figure 5.11, leading to
fewer blocking periods for QUIC during the experiments but with a higher
probability of loosing several packets in a row. We can see that Algorithm 2
still offers benefits in the presence of bursty losses. Similarly to Figure 5.11,
FlEC especially improves the results for experiments with a large 𝑐𝑤𝑖𝑛

𝑟𝑤𝑖𝑛
ratio.

We also observe a higher variance in the results due to bursty loss events being
more difficult to repair on average than isolated losses.

5.7 Delay-constrained messaging

In this section, we present the implementation and evaluation of FlEC tailored
for delay-constrained messaging. The goal is to protect entire messages in-
stead of naively interleaving repair and source symbols. Using application
knowledge, FlEC protects as much frames as possible at once.



94 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

5.7.1 Reliability mechanism

We consider an application sending variable-sized messages, each having its
own delivery deadline. To convey these deadlines, we extend the transport
API using protocol plugins (Section 5.7.1.1). Furthermore, we replace the QUIC
stream scheduler to leverage application information (Section 5.7.1.2). We
then discuss and evaluate FlEC under this scenario in Section 5.7.2.

5.7.1.1 Application-specific API

We propose the following API enabling an application to send deadline-
constrained messages.

5.7.1.1.1 send_fec_protected_msg(msg, deadline) This function
allows the application to submit its deadline-constrained messages. The QUIC
protocol already supports the stream abstraction as an elastic message service.
However, the stream priority mechanism proposed by QUIC, while being
dynamic, is not sufficient to support message deadlines. The protocol operation
attached to this function inserts the bytes submitted by the application in a
new QUIC stream, closes the stream, and attaches the application-defined
delivery deadline to it. The message must be delivered at the receiver within
this amount of time to be considered useful. If the network conditions prevent
an on-time delivery of the message, the message may be cancelled, possibly
before being sent, and the underlying stream be reset.

5.7.1.1.2 next_message_arrival(time) This function allows the ap-
plication to indicate when it plans to submit the next message. While this
API function is not useful for all kinds of unreliable messaging applications,
applications having a constant message sending rate such as video transfers
might benefit from providing such information.

5.7.1.2 Application-tailored stream scheduler

The knowledge provided by the application to the transport layer is not only
useful for redundancy scheduling. It is also valuable for the QUIC stream
scheduler. Without this information, the PQUIC stream scheduler schedules
high priority streams first and has two different ways to handle the scheduling
of streams with the same priority: 𝑖) round-robin or 𝑖𝑖) FIFO. We let the
application define its own scheduler to schedule its streams more accurately.
Algorithm 3 describes our QUIC stream scheduler for deadline-constrained
messaging applications.

The 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑆𝑡𝑟𝑒𝑎𝑚() function searches among all the available
streams attached to a deadline to find the stream having the closest expiration



5.7. Delay-constrained messaging 95

Algorithm 3 Application-tailored scheduler for delay-constrained messaging.
Require: S, the set of available QUIC streams
Require: ˆ𝑂𝑊𝐷 , the estimated one-way delay of the connection
Require: 𝑛𝑜𝑤 , the timestamp representing the current time
Require: 𝐹𝐶𝐵𝑙𝑜𝑐𝑘𝑒𝑑 (𝑠𝑡𝑟𝑒𝑎𝑚), telling if the specified stream is flow control-

blocked.
Require: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑆𝑡𝑟𝑒𝑎𝑚(S, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒), returning the non-expired

stream with the closest delivery deadline to the specified deadline
1: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑆𝑡𝑟𝑒𝑎𝑚 ← ∅
2: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 ← 𝑛𝑜𝑤 + ˆ𝑂𝑊𝐷 {Initialization}
3: while 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑆𝑡𝑟𝑒𝑎𝑚 = ∅ do

4: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑆𝑡𝑟𝑒𝑎𝑚(S, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒)
5: if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = ∅ then

6: break

7: end if

8: if ¬𝐹𝐶𝐵𝑙𝑜𝑐𝑘𝑒𝑑 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) then
9: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑆𝑡𝑟𝑒𝑎𝑚 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

10: else

11: S ← S \ {𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒}
12: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒

13: end if

14: end while

15: if 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑆𝑡𝑟𝑒𝑎𝑚 = ∅ then

16: return 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑆𝑡𝑟𝑒𝑎𝑚𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔(S) {Fallback}
17: end if



96 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

deadline while still having chances to arrive on-time given the current one-
way delay. The scheduler chooses the non-flow-control blocked stream that
is the closest to expire while still having a chance to be delivered on-time
to the destination. Our implementation estimates the one-way delay as 𝑅𝑇𝑇

2 .
Other methods exist [FHK18; Hui22b]. Recent versions of picoquic include a
mechanism for estimating the one-way delay [Hui22a] when the hosts clocks
are synchronized. In the absence of clock synchronization, the estimated
one-way delay can only be interpreted relatively, which helps to estimate the
one-way delay variation but not for decision thresholds such as the one used
in Algorithm 3.

5.7.1.3 FECPattern() and ds() for delay-constrained messaging

We now describe how our application redefines the two FlEC anchors. Our
application is sensitive to the delivery delay of entire messages more than the
in-order delivery delay of individual source symbols. We set the 𝑑𝑠 () threshold
to −𝑙 as it is useful to retransmit lost symbols that can still arrive on-time.
𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() is described in Algorithm 4. The algorithm triggers the sending
of repair symbols to protect as many messages as possible according to the
messages deadline and the next expected message timestamp if provided by
the application. The rationale is the following. If the unprotected messages can
wait for new messages to arrive before being protected, 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() does
not send repair symbols and waits for the arrival of new messages. Otherwise,
repair symbols are sent to protect the entire window until it is considered fully
protected. This idea of waiting for new messages before protecting comes
from the fact that the messages can be small and sending repair symbols for
each sent message can lead to a high overhead. By doing so, 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛()
adapts the code rate according to the application needs.

5.7.2 Evaluation

We evaluate FlEC under the messaging use-case using an application sending
video frames as messages. We set the deadline to 250 milliseconds, meaning
that each frame must be delivered within this time. We use 86 seconds of the
video recording from the Tixeo video-conference application [22j]. The frame
and bit rates are adjusted by the application. This video recording starts at
15 frames per second during the first 6 seconds and runs at 30 images per
second afterwards. For each frame, we record its delivery delay between when
the application sends it and when it is delivered at the receiver. We send
each video frame in a different QUIC stream to avoid head-of-line blocking
across frames upon packet losses. The regular QUIC solution uses the default
round-robin scheduler provided by PQUIC. In the first set of experiments,
we set the bandwidth to 8 Mbps and observe the performance of FlEC in the



5.7. Delay-constrained messaging 97

Algorithm 4 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() for delay-constrained messaging.
Require: S, the set of available QUIC streams
Require: ˆ𝑂𝑊𝐷 , the estimated one-way delay of the connection
Require: 𝑛𝑜𝑤 , the timestamp representing the current time
Require: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐷𝐿(S, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒), returning the message deadline that will

expire the sooner from the specified deadline
Require: 𝑙𝑎𝑠𝑡 , the last protected message.
Require: 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 , the number of times FECPattern has already been trig-

gered since no symbol was added to the window.
Require: 𝑚𝑎𝑥𝑇𝑟𝑖𝑔𝑔𝑒𝑟 , the maximum number of times we can trigger this

threshold for the same window
Require: 𝑛𝑒𝑥𝑡𝑀𝑠𝑔 (is +∞ if the message API is not plugged), the maximum

amount of time to wait before a new message arrives.
Require: 𝑐𝑤𝑖𝑛, 𝑏𝑖 𝑓 , the congestion window and bytes in flight.
Require: \ space to save in cwin for directly upcoming messages.
Require: 𝑙 , 𝑃𝐵𝐺 , see Table 5.1.

1: 𝑛𝑒𝑥𝑡𝐷𝐿 ← 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐷𝐿(S,𝑚𝑎𝑥 (𝑛𝑜𝑤 + ˆ𝑂𝑊𝐷, 𝑙𝑎𝑠𝑡 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒))
2: 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 ← (𝑛𝑒𝑥𝑡𝐷𝐿 = ∅ ∨ 𝑛𝑜𝑤 + ˆ𝑂𝑊𝐷 + 𝑛𝑒𝑥𝑡𝑀𝑠𝑔 + 𝜖 ≥ 𝑛𝑒𝑥𝑡𝐷𝐿)
3: 𝑛𝑈𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ←𝑊 .𝑙𝑎𝑠𝑡 − 𝑙𝑎𝑠𝑡
4: if 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 ∧ 𝑛𝑈𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ≠ 0 then

5: {Start repair symbols sequence}
6: 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 ← 1
7: 𝑙𝑎𝑠𝑡 ←𝑊 .𝑙𝑎𝑠𝑡

8: 𝑚𝑎𝑥𝑇𝑟𝑖𝑔𝑔𝑒𝑟 ← ⌈𝑚𝑎𝑥 (𝑙 ∗ 𝑛𝑈𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑, 1
𝑃𝐵𝐺
)⌉

9: else if 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 then

10: if 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 < 𝑚𝑎𝑥𝑇𝑟𝑖𝑔𝑔𝑒𝑟 then

11: 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 ← 𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 + 1 {Continue sending}
12: else

13: 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 ← 𝑓 𝑎𝑙𝑠𝑒 {Enough symbols have been sent}
14: end if

15: end if

16: return 𝑎𝑝𝑝𝐿𝑖𝑚𝑖𝑡𝑒𝑑 () ∧ 𝑝𝑟𝑜𝑡𝑒𝑐𝑡 ∧ 𝑐𝑤𝑖𝑛
𝑏𝑖 𝑓

> \



98 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

presence of losses. For each experiment, the one-way delay is sampled in the
[50, 200]𝑚𝑠 range. We next perform an experimental design analysis over a
wider parameters space.

Figures 5.13 and 5.14 show the 95𝑡ℎ and 98𝑡ℎ percentiles of the message
delivery times for each experiment. We can see that while 95% of the video
frames are delivered successfully in every experiment, regular QUIC struggles
to deliver 98% of the submitted frames on time (i.e. before 250 milliseconds)
with a one-way delay above 75 milliseconds. Indeed, with a one-way delay
above 75 milliseconds, the lost frames are retransmitted after more than 150
milliseconds and take more than 75 milliseconds to reach the receiver. Note that
QUIC’s loss detection mechanism takes a bit more than one RTT to consider a
packet as lost using the time-based loss detection threshold [RFC9002]. These
retransmitted frames thus arrive a few milliseconds before the deadline in the
best case. As we can see on Figure 5.14, only a few experiments without FlEC
have more than 98% of the frames arriving on-time while FlEC can cope with
one-way delays up to 200 milliseconds without problem. Figure 5.15 shows
that no experiment with regular QUIC succeeded to deliver 99% of the video
frames on time with a one-way delay above 75ms, while FlEC succeeded in
every performed experiment. Note that the 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() algorithm plugged
in this scenario tries to protect as many messages as possible with the same
number of repair symbols by delaying the sending of repair symbols when
new messages are expected soon. This lazy repair symbol scheduling explains
why the frame delivery time is larger than the one-way delay. In order to send
as few repair symbols as possible, FlEC delays the sending of repair symbols
to the last possible moment while ensuring that lost data can be recovered
before the deadline.

Figure 5.16 shows the ratio between the number of messages received
on-time by FlEC (𝐹𝑙𝐸𝐶𝐴𝑃𝐼 ) and by the regular QUIC implementation. In or-
der to isolate the effects of the FlEC API, the Figure also shows FlEC results
without leveraging the application knowledge brought by the API functions
(𝐹𝑙𝐸𝐶𝑁𝑂−𝐴𝑃𝐼 ). It thus uses PQUIC’s default stream scheduler and sends repair
symbols for each newly sent message. As it is only a simplified version of Algo-
rithm 4, we do not show the 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() algorithm of this second solution.
As we can see, nearly every experiment ended with more messages received
on-time using the API-enabled 𝐹𝑙𝐸𝐶𝐴𝑃𝐼 compared to QUIC. A similar gain
compared to the regular QUIC is present for both 𝐹𝑙𝐸𝐶𝐴𝑃𝐼 and 𝐹𝑙𝐸𝐶𝑁𝑜−𝐴𝑃𝐼 .
However, the interest of the application-defined API resides in the redundancy
it needs to obtain those results.

We now analyze the redundancy overhead of our solution. Figure 5.17
shows the ratio of bytes sent by the server between regular QUIC and FlEC with
and without the API defined in Section 5.7.1.1. The results of 𝐹𝑙𝐸𝐶𝑁𝑜−𝐴𝑃𝐼 show
that protecting every message blindly is very costly in terms of bandwidth.



5.7. Delay-constrained messaging 99

50 75 100 125 150 175 200
One-way delay (ms)

50
150
250

500

D
el

iv
er

y
tim

e
95

th
pe

rc
en

til
e bw = 8Mbps, loss = 1%, deadline = 250ms

FlEC
QUIC

Figure 5.13: Message delivery time 95th percentile, comparing FlEC using the

application-defined API and the regular QUIC.

50 75 100 125 150 175 200
One-way delay (ms)

50
150
250

500

D
el

iv
er

y
tim

e
98

th
pe

rc
en

til
e bw = 8Mbps, loss = 1%, deadline = 250ms

FlEC
QUIC

Figure 5.14: Message delivery time 98th percentile, comparing FlEC using the

application-defined API and the regular QUIC.

50 75 100 125 150 175 200
One-way delay (ms)

50
150
250

500

D
el

iv
er

y
tim

e
99

th
pe

rc
en

til
e bw = 8Mbps, loss = 1%, deadline = 250ms

FlEC
QUIC

Figure 5.15: Message delivery time 99th percentile, comparing FlEC using the

application-defined API and the regular QUIC.



100 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

50 75 100 125 150 175 200
One-way delay (ms)

0.9

1.1

#m
sg

Fl
EC

#m
sg

Q
UI

C

bw = 8Mbps, loss = 1%, deadline = 250ms

FlECAPI
FlECNO−API

Figure 5.16: Messages received on-time comparing QUIC and FlEC with and

without the application-defined API.

50 75 100 125 150 175 200
One-way delay (ms)

0.33

0.5

0.9
1.1

2
3

By
te

ss
en

t
Fl

EC
Q

UI
C

bw = 8Mbps, loss = 1%, deadline = 250ms

FlECAPI
FlECNO−API

Figure 5.17: Bytes sent by the server, comparing QUIC and FlEC with and

without API, using BBR.

Indeed, for this video-conferencing transfer, many video frames sent by the
application are smaller than the size of a full QUIC packet. The REPAIR frames
sent by FlEC contain additional metadata. In this case where the application
traffic is thin, protecting every message may double the volume of sent data
as shown for 𝐹𝑙𝐸𝐶𝑁𝑜−𝐴𝑃𝐼 on Figure 5.17. Using FlEC with the message-based
API can spare bandwidth significantly by using application-aware stream and
redundancy schedulers. Note the portion of the graph between 5ms and 70ms
one-way delays. For those configurations, no repair symbol is sent by 𝐹𝑙𝐸𝐶𝐴𝑃𝐼 .
Indeed, the messages are acknowledged by the peer before 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛()
triggers the sending of repair symbols. FlEC thus naturally uses SR-ARQ
when redundancy is not needed to meet the message deadlines. The amount
of redundancy sent then gradually increases along with the one-way delay.
Indeed, when the delay increases, the number of messages that can be protected
at the same time by the 𝐹𝐸𝐶𝑃𝑎𝑡𝑡𝑒𝑟𝑛() algorithm decreases.



5.8. Conclusion 101

0.5 0.75 1 1.33 2
Ratio

0.0

0.5

1.01.0

CD
F

RTT ∈ [10, 400]ms, bw ∈ [0.8, 30]Mbps, loss ∈ [0.1, 3]%

#msgFlEC
#msgQUIC

bytesFlEC
bytesQUIC

Figure 5.18: Experimental design analysis for the delay-constrained messag-

ing use-case using BBR.

Experimental design analysis

Figure 5.18 shows the results of an experimental design analysis using the
parameters depicted on the top of the Figure. The Figure shows CDFs for
the amount of bytes sent by the server and the number of messages received
within the deadline. In a few cases, the FlEC solution using the application-
tailored API sends a similar amount of bytes to regular QUIC. This is due to
the fact that for some configurations, the delay was sufficiently low to send no
or only a few repair symbols. We can also see that none of the experiments
revealed a lower amount of on-time received messages compared to regular
QUIC, showing the robustness of FlEC under various network conditions.

Improvements

Other information from the application could have been taken in addition
to the message deadlines. For example, information concerning the video
frames type could have an impact on the stream scheduling: H264 I-frames
are more important than P ones as the latter depend on the first to be decoded.
The stream scheduling could even be further improved by looking at the
dependence between each frames in a group of H264 frames. Given the
flexibility of FlEC, the messaging API can be extended for the application to
transfer this kind of knowledge to the transport stack.

5.8 Conclusion

In this chapter, we redefined the QUIC loss recovery mechanism and en-
abled a per-use-case customization. Flexible Erasure Correction (FlEC) allows
efficiently combining retransmissions and Forward Erasure Correction. Appli-



102 Chapter 5. FlEC: application-tailored loss recovery using protocol plugins

cations can either use a standard Selective-Repeat ARQ mechanism or tailor a
Forward Erasure Correction mechanism that fits their own traffic pattern and
sensitivity to delays. Our FlEC implementation leverages the PQUIC protocol
plugins to enable the application to insert its own algorithms to select the level
of redundancy and perform the stream scheduling decisions. We customized
FlEC for three different use-cases. We evaluated and demonstrated that FlEC
can be configured with small to no effort by applications to significantly en-
hance the quality of experience compared to the existing QUIC loss recovery
mechanisms in simulations. Yet, we still have to overcome a few limitations
of our approach. First, the computational overhead of the PQUIC framework
is important and we saw in Section 5.5.2.2 that it can lead to bad results on
real networks when loss events are rare. Second, the scenarios explored until
now were generic and mostly evaluated in a simulated environment. Finally,
we did not evaluate yet the performance improvements of our loss recovery
extension on real applications.

Chapter 6 explores in more details the loss characteristics of the Starlink
network we installed at UCLouvain to see how a FEC-enabled loss recovery
mechanism can bring benefits on real networks. The findings of Chapters
5 and 6 are then leveraged in Chapter 7 where an efficient loss-recovery
mechanism inspired by FlEC is implemented to improve real applications on
actual networks without the computational overhead of PQUIC and FlEC.



Starlink: analyzing a new

access network
6

The evaluation parts of the previous chapters were focusing on either emulated
or simulated environments. In the last chapter, we saw that FlEC could bring
significant benefits in different scenarios by adapting the loss recovery to
the application. However, we observed that FlEC could cause a performance
degradation when applied outside simulations for the bulk scenario. In or-
der to experiment with real network accesses where FEC can bring latency
improvements, we purchased a standard Starlink access and installed it on
the roof of our laboratory building in Louvain-la-Neuve. In this chapter, we
analyze the different characteristics of this network access. This analysis
includes throughput and delay measurements, but also provides a detailed
study of packet losses, observing the rate and patterns of loss events as well
as their duration. This study shows that QUIC applications may encounter
numerous loss events when using a Starlink network access and may benefit
from a FEC-enabled loss recovery mechanism.

This work was done in collaboration with Martino Trevisan (University of
Trieste) and Danilo Giordano (Politechnico di Torino). It has been published
and presented at the IMC ’22 conference [Mic+22]. This chapter reflects the
state of our Starlink access by the time of writing that article, although the
results are still relevant today.

6.1 A new wireless access network

Internet access technologies and Internet protocols are constantly evolving.
Broadband technologies such as xDSL and cable modems are prevalent today,
but they are being replaced by optical fibers. In densely populated areas
such as cities, fiber deployment can be profitable, while it can be much more
expensive in rural or mountainous areas. For this reason, network operators
have been working on other Internet access technologies for considerable
time. Some propose Fixed Wireless Access (FWA) technologies [ATT; CM19].
Others are deploying hybrid networks that combine cellular and xDSL [KHB20;
For16]. Given the opportunities offered by these rural areas, several companies
nowadays offer satellite-based Internet access solutions.

Classical Satellite Communications (SatCom) use geostationary satellites at

103



104 Chapter 6. Starlink: analyzing a new access network

an orbit of 22 236 miles. A single satellite can cover a large portion of the Earth
at the price of a latency of several hundreds of milliseconds due to their high
elevation [CGK10; Kod+20]. Such a communication technology may provide
connectivity to thousands of customers with connections easily reaching up
to 100Mbps, with the drawback of a latency above 500 ms [Per+22]. These
geostationnary satellite services are the ones providing the Mobile Satellite
Service (MSS) for the In-Flight Communications (IFC) scenario explored in
Chapters 2 and 4.

A new approach is to use a constellation of Low Earth Orbit (LEO) satel-
lites to dramatically reduce communications latency. The first large-scale
deployment of this kind is the Starlink constellation, currently operating more
than two thousand satellites. The commercial service started in beta version
in October 2020 in the United States and from 2021 in European countries. It
promises Internet access with latency on the order of 20 ms and bandwidth
between 100 and 200 Mbps [22i]. Being a newborn service, its operation and
performance have not been fully investigated yet. The only comparable work
has been proposed by Kassem et al. [M K+22], which shows how Starlink
performance changes from different vantage points. We here focus on how
the network characteristics of a single Starlink vantage point changes when
accessing globally distributed resources, under high and heavy network loads,
with the TCP and QUIC transport protocols.

For many years, TCP has been the dominant protocol for Internet services
[TMW97; LCB10]. SatCom operators therefore widely adopt TCP Performance
Enhancing Proxies [RFC3135] (PEP) to mitigate the impact of increased latency
on TCP performance. In contrast with TCP, QUIC cannot be optimized by using
PEPs in satellite networks since QUIC packets are encrypted and authenticated.
Given the current growth of QUIC traffic, it is important to evaluate new access
networks using both QUIC and TCP.

In the next sections, we benchmark the Starlink service and compare it
to traditional SatCom networks. We measure the performance in terms of
throughput for QUIC and TCP, latency, and packet loss, and find that Starlink
delivers its performance promises and enables the use of demanding services
such as high-definition video streaming or cloud gaming. We also find that
Quality of Experience (QoE) for Web browsing with Starlink is far better than
with traditional SatCom and comes close to wired access.

6.2 Testbed and Measurements

For our experimental campaign, we use three off-the-shelf PCs equipped with
8 cores and 16 GB of memory running Ubuntu 20.04 and Linux kernel version
5.0.4. The first two PCs are located in the UCLouvain campus in Louvain-la-
Neuve, Belgium. The first PC (PC-Starlink) is connected to the Internet via



6.2. Testbed and Measurements 105

Starlink with a regular subscription. The second PC (PC-Wired) is connected to
the UCLouvain campus network via a 1 Gbit/s Ethernet adapter. The third PC
(PC-SatCom) is connected to the Internet via a traditional SatCom equipment
for which we have purchased a regular plan offering up to 100 Mbit/s in
downlink and 10 Mbit/s in uplink. The SatCom operator is a reseller and relies
on a major European provider that uses geostationary satellites to provide
Internet access. Our user equipment consists of a dish antenna and a modem
that connects the PC to the network. For each setup, the TCP receive window
is the kernel default, i.e. 131072 bytes with a maximum of 6291456 bytes
through automatic buffer tuning. The congestion control is Cubic. We use
the three PCs to run the experiments that we describe in detail below and
summarize in Table 6.1.
QUIC measurements. Some of the performance metrics of this article are
gathered using QUIC. We assess the network performance with two kinds of
transfers: (i) bulk HTTP/3 (H3) [RFC9114] 100MB transfers and (ii) light QUIC
transfers with regularly sent messages, similar to a real-time video traffic. The
latter sends 25 variable length messages per second during 2 minutes. Each
message has a size sampled randomly in the 5-25kB range. The average bitrate
of this transfer is 3 Mbit/s, far below both downlink and uplink capacities
announced by Starlink. The QUIC client runs on PC-Starlink while the server
is located in the UCLouvain university campus. Half of the experiments are
transfers from the server to the client (download) and the other half are from
the client to the server (upload). Using QUIC instead of TCP ensures that
we measure the end-to-end latency as it forbids the use of middleboxes and
proxies interfering with the traffic at the transport layer as it can be done for
TCP with PEPs. The way QUIC identifies and retransmits packets also allows
us to exactly point every lost packet and disambiguating original packets from
retransmissions. The QUIC H3 server is able to provide more than 400Mbps of
QUIC traffic to other servers outside our campus. The QUIC implementation
used is quiche [Clo22] compiled in release mode from commit ba87786. Its
initial max_data and max_stream_data transport parameters are set to
10MB and the receive window varies through automatic buffer tuning. The
congestion control used is Cubic.
Latency. We measure the latency of Starlink by probing a set of 11 anchors
using ping. Our set of anchors includes 7 servers used inside the RIPE Atlas
project [22e]. The servers are located in Europe (Amsterdam ×2, Nuremberg
×2), North America (New York, Fremont) and Asia (Singapore). We also include
4 nodes of the RIPE Atlas project hosted by volunteers in the same country as
our Starlink connection (Belgium). Every five minutes, we measure the latency
towards the anchors running 3 pings. We also measure the link latency under
light and heavy network load by studying the evolution of the Round-Trip
Time (RTT) measured by QUIC with our messages and H3 transfers.



106 Chapter 6. Starlink: analyzing a new access network

Table 6.1: Overview of the datasets.

Measure Network Duration Target

Latency Starlink 5 Months 11 Anchors

Throughput Starlink 4 Months Ookla
ServersSatCom 2 Weeks

Web Browsing Starlink 4 Months 120
WebsitesSatCom 2 Weeks

QUIC H3 Starlink 5 Months Our server
QUIC messages Starlink 5 Months Our server

Packet loss. Starlink provides a new kind of wireless network access. In gen-
eral, packet losses come from two causes: congestion or medium imperfection
(e.g., electromagnetic interferences). We study the packet losses under light
and heavy network load using our QUIC setup with both bulk H3 transfers
and messages variants.
Throughput. We measure Starlink download and upload throughputs using
the command-line version of the Ookla SpeedTest service [22h]. The applica-
tion selects the closest test server and probes download and upload capacities
by opening several parallel TCP connections. We perform a speed test ev-
ery half hour using PC-Wired from December 20 2021 to April 7 2022. We
compare Starlink with SatCom using PC-SatCom, on which we run identical
measurements, scheduling them at the same pace. Finally, we also measure
the Starlink throughput using our QUIC H3 setup.
Web Browsing. We measure the performance of Starlink for Web browsing
by running on PC-Starlink automatic visits to websites and collect metrics that
can be used as proxy for users’ perceived QoE. We rely on BrowserTime, a tool
performing automated visits to websites [22a]. We rely on the rank provided
by SimilarWeb [22k], an online ranking service out of which we pick the top-
120 websites for Belgium. Among the statistics collected with BrowserTime,
we focus on two metrics that have been shown to be correlated with users’
QoE [Hor+18]: (i) onLoad: the time when the browser fires the onLoad event
– i.e., when all elements of the page have been downloaded and parsed; (ii)
SpeedIndex: proposed by Google [22g], it represents the time at which the
visible parts of the page are displayed. It is computed by recording the video
of the browser screen and tracking the visual progress of the page during
rendering. Every half an hour, we test 30 websites chosen at random and
ensure they do not overlap with the speed test experiments. We collect data
from December 20 2021 to April 7 2022. We compare the browsing experience
offered by Starlink with the SatCom link by running the same experiments on
PC-SatCom and collect the resulting metrics.



6.3. Results 107

BE-1

BE-2

BE-3

BE-4

D
E-1

D
E-2

N
L-1

N
L-2

SG US101

102

103
RT

T
(m

s)
28.4 28.9 24.7 24.7 20.6 20.2 23.5 23.0 237 161

Min RTT (ms)

Figure 6.1: Distribution of the RTT to the anchors. The top 𝑥 axis reports the

distribution minimum. Notice the logarithmic 𝑦 axis.

2022-01-01

2022-01-15

2022-02-01

2022-02-15

2022-03-01

2022-03-15

2022-04-01

2022-04-15

2022-05-01

2022-05-15
0

10
20
30
40
50
60
70
80

RT
T

(m
s)

25th perc. Median 75th perc. Minimum

Figure 6.2: RTT towards the European anchors.

6.3 Results

In this section, we report our results and findings. We first discuss the measured
latency and then focus on packet loss and throughput, comparing Starlink with
traditional SatCom. Finally, we discuss QoE-related metrics for web browsing
and the presence of middleboxes.

6.3.1 Latency

We begin our analysis by looking at the RTT. We first measure the latency
without load on the link, which is the best latency Starlink subscribers could
achieve. We then perform QUIC downloads and uploads, thus generating
bandwidth pressure and study how the RTT evolves under load.



108 Chapter 6. Starlink: analyzing a new access network

6.3.1.1 Latency during inactivity

Figure 6.1 shows the distribution of the measured latencies towards our set
of anchors. The 𝑦-axis (in logarithmic scale) represents the distribution of
RTT measured by ping in the form of a boxplot: boxes range from the 25𝑡ℎ to
the 75𝑡ℎ percentile, while whiskers range from the 5𝑡ℎ to the 95𝑡ℎ . The black
central stroke represents the median, while on the upper 𝑥 axis we indicate
the absolute minimum of the distribution. The 4 left-most boxes are the four
local anchors. In the median case, the RTT is in [46, 52]ms and exceeds 70ms
in less than 5% of cases. The minimum observed RTT for these anchors is
[24, 28]ms. Similar considerations apply to the two Dutch anchors. The lowest
RTT we observe is for the two German probes, which PC-Starlink reaches
in only 42ms in median. The lowest RTT we observe is 20.2ms, confirming
Starlink’s 20ms latency promise. We observe that these values allow high QoE
for voice calls [ITU03] and are compatible with latency-sensitive services such
as cloud gaming. Indeed, GeForce Now, one of the leading platforms, mandates
a latency below 80ms [22d]. To reach the most distant anchor points in the
U.S. (San Francisco) and Asia (Singapore), the RTT is necessarily much higher,
but not more than the distance between the endpoints would suggest. San
Francisco and Singapore are reached in a median of 184 and 270ms respectively.
Using traceroute, we verified the path taken by packets towards San Francisco
and Singapour and the exit nodes from the Starlink network were the same
as for the European anchors (i.e. one exit in the Netherlands and the other in
Germany). This suggests that inter-satellite links (ISL) were not enabled by
the time, although ISL-capable satellites were already launched [Twi22a] and
ISL activation was planned by the end of 2022 [Twi22b]. As of writing this
thesis, traceroutes towards american anchors still exit the Starlink network
through European service providers and do not seem to leverage inter-satellite
links.

To investigate how latency evolves over time, we depict in Figure 6.2 vari-
ous percentiles and the minimum values, focusing on European anchors. The
𝑥-axis spans the five months of measurements, and we compute our statistics
using 6-hours bins. The picture is fairly flat, indicating stable performance
and no particular changes in Starlink infrastructure over this period. The RTT
to the European anchors remains constant around 50 ms in median and ranges
from 40 ms (25𝑡ℎ percentile) to 60ms (75𝑡ℎ). The minimum measured latency is
on the order of 20 ms. Interestingly, we observe that the distribution takes on
slightly smaller values of a few milliseconds from February 11 onwards - see
the small step in the middle of the figure. We suspect that this improvement is
related to new satellites joining the constellation in early 2022, although we
have no direct evidence [22f]. Moreover, we observe an increase in RTT during
the last week of April and the first week of May. Since, at that time, we did not



6.3. Results 109

0.05 0.15 0.25
HTTP/3 RTT (s)

0.0

0.5

1.0

CD
F

Download
Upload

(a) H3 bulk traffic.

0.05 0.15 0.25
Messages RTT (s)

0.0

0.5

1.0

CD
F

Download
Upload

(b) Messages traffic.

Figure 6.3: Measured per-packet RTT distribution.

run other experiments concurrently, we speculate that in this period Starlink
was more loaded or going through reorganization, but we cannot confirm this.
Finally, we observe that distribution of RTT is rather flat over the hours of the
day. The median RTT is around 50 ms and a Mood’s test suggests the samples
are drawn from distributions with the same median. Similar considerations
hold for throughput measurements as well, and this can hint low utilization
of the infrastructure as it does not seem impacted by diurnal patterns.

6.3.1.2 Latency under load

We now study the latency evolution under link pressure. We perform HTTP/3
downloads and uploads towards our server and study the evolution of the RTT
during the file transfer. Figure 6.3 shows the distribution of the RTT for every
acknowledged packet during the experiments. We compute the downloads
curve by running an additional one-week experiments session with packets
captures on the server as they were too few RTTs samples coming from
the client capture for download transfers. Each curve contains more than 2
millions RTT samples. We note a median, 95𝑡ℎ and 99𝑡ℎ percentiles RTT of 95
(resp. 104), 175 (resp 237) and 210 (resp 310) ms for downloads (resp. uploads).
We can see that the RTT increases more for uploads than download. This
difference may be explained by the larger available bandwidth for downloads
allowing emptying the router queues faster than for uploads, having thus a
smaller impact on queuing delay for equally-sized queues.

We finally study the RTT evolution with the QUIC message transfers.
Compared to the H3 traffic, the RTT stays mostly under 100ms, similarly to
the values we obtain for pinging European anchors. The downloads (resp.
uploads) have 50 (resp. 66) ms median RTT, 71 (resp 87) ms 95𝑡ℎ percentile
and 87 (resp. 143) ms 99𝑡ℎ percentile RTT. The larger RTT for uploads relates
to quiche not implementing packet pacing for their default HTTP/3 client.



110 Chapter 6. Starlink: analyzing a new access network

The largest messages (25 kB) are thus stacked in the network’s buffers making
the RTT increase lightly. To sum up these latency measurements, we observe
that the minimum latency of Starlink is on the order of 20 ms for nearby
destinations, as publicly advertised. Under traffic load, it may increase to a
few hundreds of milliseconds, probably due to bufferbloat on the access link.

6.3.2 Characterizing packet losses

Packet losses can be caused by congestion or imperfections on the medium. For
downloads, we determine losses by looking at QUIC received packet numbers
on the client. As in QUIC retransmitted data have different packet numbers
from the original data and as the quiche implementation does not introduce
packet number gaps, every missing packet number means the packet has been
lost. For uploads, we determine the received packets by looking at the ACK
frames returned by the server.

6.3.2.1 Packet losses during HTTP/3 transfers

We first study the packet losses encountered during HTTP/3 bulk transfers.
In this case, losses can be due to both congestion and medium imperfections.
Note that the UDP buffers of each QUIC endpoint were configured to be large
enough to prevent any packet loss due to UDP buffers being filled. The first
two columns of Table 6.2 show the packet loss rates recorded during the
H3 transfers. We can see that uploads suffered from more loss events than
downloads. Nearly 2% of the packets were lost during uploads while a bit
more than 1.5% were lost during downloads. Figure 6.4a shows the measured
distribution of the loss burst lengths during H3 transfers. The loss burst length
is the number of consecutively lost packets for each loss event. As we can see,
the majority of the loss events during uploads concerned only one packet at a
time, while more than 75% of loss events during downloads concerned several
consecutive packets. We also look at the duration of a loss event. Indeed, some
wireless technologies such as 802.11 implement retransmission mechanisms
that may delay the arrival of subsequent packets, resulting in small silent
periods during the transfer [MB21a]. As packets are captured on the client,
we can compute the duration of loss events during downloads. We identified
244 008 loss events. The median loss event duration is 49 microseconds. The
75𝑡ℎ and 90𝑡ℎ percentiles are respectively 58 and 113 microseconds. The 95𝑡ℎ
and 99𝑡ℎ percentiles are 1.5 and 7.5 milliseconds. We also identified a small
number of longer loss periods lasting more than 1 second identifying a possible
loss of connectivity.



6.3. Results 111

Table 6.2: QUIC packet loss ratios

H3 ↓ H3 ↑ Messages ↓ Messages ↑
1.56% 1.96% 0.40% 0.45%

1 3 5 7 9 11 13 15 17 19 21
loss burst length

0.0

0.5

1.0

CD
F

(a) H3 transfers

1 3 5 7 9 11 13 15 17 19 21
loss burst length

0.0

0.5

1.0

Download
Upload

(b) Messaging transfers

Figure 6.4: Measured loss bursts distribution. Note that Table 6.2 shows that

packet losses are far less common for messages transfers. The loss bursts

during messages are thus larger but less frequent.

6.3.2.2 Packet losses during low bitrate transfers

We now focus on the low bitrate messaging use-case. The two last columns
of Table 6.2 show the packet loss ratios measured during those transfers.
Conversely to the H3 experiments, the computed loss ratio is only slightly
smaller for downloads than for uploads. The loss rate is also significantly
lower compared to H3. Given the low bitrate of the messaging use-case and
the overall low RTT previously measured, we can expect that fewer packet
losses were caused by congestion here. Note however that from the transport
viewpoint, there is no known way to distinguish between congestion and
medium-induced losses. This is why loss-based congestion control algorithms
such as Cubic [HRX08] interpret every loss event as a congestion signal.

Figure 6.4b shows the loss bursts lengths distribution for the messaging
experiments. While packet losses are a lot less frequent compared to the
H3 experiments (see Figure 6.2), the loss bursts are in general longer when
occurring. We conjecture that most of the loss events occurring during the H3
experiments are due to congestion: they are more frequent and only concern
a few packets, while the loss events encountered during the message transfers
may be mostly related to the medium, sometimes being even comparable to
small network outages with some loss bursts spanning more than 100 packets
(also present for H3 transfers). Concerning the loss events duration, most
events for message transfers were shorter than 1ms. However, we noted
95𝑡ℎ and 99𝑡ℎ percentiles of 104 and 127 ms which are larger than the same



112 Chapter 6. Starlink: analyzing a new access network

percentiles for H3 downloads (note that the loss events for message transfers
are a lot more rare than H3 loss events and that H3 transfers probably mostly
encounter congestion-induced losses). Such long loss events would be more
difficult to recover using FEC as the repair symbols would arrive more than
100 milliseconds after the start of the event. Similarly to H3, we also detected
small network outages with loss events lasting more than 1 second.

Finally, we checked that those losses were neither caused by our network
nor our server by running downloads for both H3 and messages transfers from
a machine in Amsterdam (i.e., close to an exit point of the Starlink network)
towards our H3 server. For H3 (resp. messages) downloads, over more than
5.8 M (resp. 2.8 M) packets sent by our QUIC server, only 10 (resp. 8) were
lost, making loss events nearly absent when the client is outside Starlink.

To sum up these packet loss experiments, we can say that the loss events
occurring when the link is loaded are more frequent and only affect a few
consecutive packets. Without link pressure, the loss events are more rare,
concern overall more consecutive packets and last longer.

6.3.3 Throughput

Figure 6.5 shows the throughput distribution for three experiments: Ookla
Speedtest on Starlink, H3 bulk download on Starlink and Ookla Speedtest on
the regular SatCom access. We first discuss the Ookla speed tests and then the
H3 results.

6.3.3.1 Speed test results

By looking at the left graph of Figure 6.5, we can see that Starlink’s download
throughput ranges between 100 and 250 Mbps. The median value is 178 Mbps,
while the maximum is 386 Mbps. This maximum is surprisingly high given the
company’s public statements, i.e., download speeds between 100 Mbps and 200
Mbps. We note that they enable the use of bandwidth-intensive services, such
as High-Definition video streaming. Netflix’s 4K videos require a download
bandwidth of 15 Mbps [22c], while Disney+ recommends 25 Mbps [22b].

The upload throughput, on the right of Figure 6.5, is significantly lower,
reaching a median of 17 Mbps. Fewer than 5% of the cases exceed 30 Mbps
and the highest observed rate is 64 Mbps. For both metrics, we cannot find a
seasonality in the measurements. Looking at the different hours of the day, the
median throughput varies by less than ±10% with no apparent day-night cycle.
Furthermore, we have not observed any increasing or decreasing trend in the
measurements over our three months of experiments, and the distributions
assume approximately the same average values and variability.

Comparing with traditional SatCom, we find that Starlink provides higher
throughput in both scenarios. Considering download, with a median value



6.3. Results 113

0 100 200 300 400
Download (Mbit/s)

0.00

0.25

0.50

0.75

1.00
CD

F

0 10 20 30 40 50
Upload (Mbit/s)

Starlink Ookla
Starlink H3
SatCom Ookla

Figure 6.5: Measured throughput distribution.

of 178 Mbps, Starlink is more than twice as fast as SatCom (82 Mbps). The
situation is similar for upload: the traditional SatCom connection inherently
offers lower upload throughput (4.5 Mbps in median), as it is limited to a
bitrate of 10 Mbps.

We can briefly compare these values with mobile networks looking at
recent related work. Safari et al. [Kha+17; TKG20] conducted a large-scale
measurement campaign in 2018 involving 4 European mobile network opera-
tors in 2 countries. For download, they found that in the best case (4G with
good signal quality), mobile networks provide a median throughput of 29.5
Mbps. For upload, the authors found a median bitrate of 14 Mbps, comparable
to Starlink’s 17 Mbps. However, keep in mind that these throughput measure-
ments [Kha+17; TKG20] are already 5 years old at the time of writing and thus
possibly outdated.

6.3.3.2 HTTP/3 transfers

We now measure throughput using HTTP/3 with our server located in Belgium,
the same country as the Starlink access. We report the measured throughput
distribution for the download and upload of 100MB of data in Figure 6.5. We
ran two experiment sessions, one until the 7𝑡ℎ of April and one starting from
the 25𝑡ℎ of April. We observed a difference of download throughput during the
two sessions but the upload throughput stayed the same. All the parameters
are the same for the two sessions but we observed an increase of download
capacity for QUIC. Figure 6.5 thus shows the results for the second session
as they represent the most up-to-date results for Starlink.1 The download
bitrate sits mostly between 100 and 150 Mbps which is in line with what

1While not present on the graph, all packet captures for the first session are provided in the
artifacts of this thesis.



114 Chapter 6. Starlink: analyzing a new access network

0 5 10 15 20 25
OnLoad (s)

0.00

0.25

0.50

0.75

1.00
CD

F

0 5 10 15 20
Speed Index (s)

Starlink
SatCom
Wired

Figure 6.6: Web browsing performance.

is announced by Starlink but lower than the best results obtained with the
Ookla TCP speed tests and lower than what our QUIC server can deliver
to other wired endpoints. We also excluded the possibility of an incorrect
receive window tuning of the quiche implementation by running additional
experiments with a 150MB receive window, leading to similar results. The
difference in download throughput may be due to the fact that regular speed
tests use at least four concurrent TCP connections while the QUIC download
uses one single connection, reacting more strongly to losses [FL20; Mac+].
It is also possible that Ookla speed tests are prioritized by the operator. The
measured upload throughput is similar for the two sessions and is in-line with
the Ookla speed test results: they have the same median, although the QUIC
results are more stable. In summary, Starlink outperforms traditional SatCom
for both download and upload. The measured throughput with QUIC is lower
compared to TCP speed tests for downloads but similar to TCP speed tests for
uploads.

6.3.4 Browsing Performance

We now quantify the Starlink performance for Web browsing. We compare the
user experience of Starlink users against other access technologies. We resort
to the onLoad and Speed Index metrics that have been shown to correlate with
it [Hor+18]. We continuously visit a set of 120 popular websites in our country,
using PC-Starlink, PC-SatCom and PC-Wired.

In Figure 6.6, we show the CDF of QoE-related metrics. Starting from
onLoad (left of Figure 6.6), we find that it generally ranges from a few to 15-20
seconds, depending on the website and conditions. Starlink provides a median
onLoad of 2.12s and an interquantile range between 1.60s and 2.78s. Experi-
ments with the SatCom equipment show that onLoad is substantially larger,
10.91s on median. The distribution ranges from 8.36s (25𝑡ℎ percentile) to 13.59s



6.3. Results 115

(75𝑡ℎ percentile). It is likely that this performance is due to the high latency of
the SatCom connections, which affects the operation of TCP and HTTP. Note
that rendering a web page requires opening multiple connections to different
servers to retrieve all page objects. In our dataset, a single visit results in 15
connections on average. On SatCom, opening a connection (including the
TLS handshake) takes an average of 2 030ms, while Starlink requires only
167ms. Concerning the performance of the wired network, the median on-
Load is 1.24s, still considerably lower than the other two cases. Although we
do not run experiments on mobile networks, we mention that Rajiullah et
al. [Raj+19] used a large testbed of mobile nodes to visit a number of popular
websites. They measure onLoad times on the order of 2 − 5s, thus moderately
higher than what we measure on Starlink. Similar considerations apply to the
SpeedIndex (right of Figure 6.6). Starlink shows a median performance of 1.82s,
outperforming SatCom with a 8.19s median SpeedIndex. Starlink performance
is closer to the wired setup.

To sum up, Starlink outperforms SatCom for web browsing and has close
performance to regular wired access. Looking at QoE-related metrics, Starlink
is 75 − 80% faster than traditional SatCom.

6.3.5 Middleboxes and traffic discrimination

SatCom solutions often deploy PEPs to alleviate the problems due to the high
link latency. Some operators also apply traffic discrimination to control the
bandwidth used by applications on their network. In this section, we analyze
the presence of middleboxes and traffic discrimination on the Starlink network.
PEPs and middleboxes: We first use Traceroute and Tracebox [Det+13]
to detect PEPs and middleboxes. Traceroute shows us the presence of two
levels of NAT at the two first nodes: the Starlink access point (192.168.1.1)
and a carrier-grade NAT node (100.64.0.1) at the exit of the satellite link.
Tracebox does not show the presence of any PEP: the TCP handshake is
correctly performed in the destination network. Only the TCP and UDP
checksums are altered by the NATs.
Traffic discrimination: We employ Wehe [Li+19], a state-of-the-art tool to
detect traffic discrimination. It replays packet traces of 22 popular services
including video streaming (e.g., Netflix, YouTube) and video calls (e.g., Zoom,
Skype). It then replays the same traces with randomized bytes to prevent the
operator from correlating this traffic to the original service. In the case of
Starlink, we launched ten times the complete Wehe tests but could not find
any traffic discrimination policy in place, at least for these popular services.



116 Chapter 6. Starlink: analyzing a new access network

6.4 Conclusion

This study presents a tour of our Starlink access point. Our TCP and QUIC
measurements show that Starlink delivers its promised low latency and high
throughput. It enables the use of latency-sensitive services that struggle with
traditional SatCom. Interestingly, early simulations of LEO constellations
(see Hypatia [Kas+20], among others) predicted similarly low values for RTT,
especially in this first phase of low utilization. Our QUIC measurements
reveal additional details about the RTTs and packet losses under load. During
HTTP/3 bulk transfers, RTTs increase more than when applications exchange
messages at a low rate.

At the application level, we have studied QoE for web browsing and found
it to be radically better than traditional SatCom. Note, however, that we only
studied a limited number of websites because we wanted to visit them hourly.
We did not account for differences in experiences that could be due to different
browsers, different devices, or other factors. Also, we only visited landing
pages, while a more realistic campaign should include internal pages [Aqe+20].

The most interesting part of this study for this thesis is the presence of
packet loss even at low network utilization. Thanks to QUIC’s precise ac-
knowledgments, our measurements show that packet losses are more frequent
during bulk transfers and provide some characterization of the loss patterns.
While a few loss events span several dozens of packets and last more than
100 milliseconds, most of then seem easily recoverable using Forward Erasure
Correction. The large available bandwidth also leaves room for the sending of
redundancy without diminishing the performance of latency-sensitive traffic.
The next chapter focuses on providing actual performance improvements
in such a real lossy network for real applications without the performance
drawbacks caused by FlEC.



QUIRL: improvements for

real applications on real

networks

7

Until now, our solutions were focusing on emulated (Chapter 2 and 4) or
simulated (Chapter 5) lossy environments. Furthermore, the studied scenarios
were synthetic, with self-implemented bulk and message transfers. The latter
was studied using traces from a video conferencing software without knowing
if our solution actually improved the video quality of experience. In this
chapter, we study the actual improvements that can be obtained from the
ideas explored in this thesis. We apply the lessons learned from the previous
chapters on real applications running over real networks. Chapter 6 introduced
a network having both congestion-induced and medium-induced packet losses
that is a good real-network candidate to experiment with QUIC and FEC.

We perform a second real-network experiment with FlEC and confirm that
due to the heaviness of the PQUIC framework, FlEC can provide bad experi-
mental results outside simulations. We start from the ideas brought by FlEC
and adapt them in real-world scenarios. We then develop QUIRL (short term
for “quirrell”, derived from the words QUIC, REdundancy and Low-Latency),
the resulting solution in a production QUIC implementation. We evaluate its
performance for popular video streaming and web-based applications over
a real lossy network. Our evaluation shows that for video streaming QUIRL
improves the video quality while meeting strict delay requirements. For web
transfers, QUIRL efficiently reduces the tail latency when packet losses occur
without causing harm when there are no losses.

This chapter is organised as follows. We describe QUIRL and its design in
Section 7.2. Section 7.3 addresses QUIRL implementation details. Section 7.4
and 7.5 then describe and evaluate how QUIRL can be used with curl and
GStreamer to improve their quality of experience.

7.1 Existing FEC extensions for QUIC

During the writing of this thesis, rQUIC [Gar+19; Zve+21] proposed another
integration of FEC into QUIC and studied other practical applications such as
web page load time and DASH [ISO22]. In contrast with QUIC-FEC and FlEC,

117



118 Chapter 7. QUIRL: improvements for real applications on real networks

10 20 30 40 50 60 70 80
Transfer completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QUIC
QUIRL
FlEC
PQUIC

Figure 7.1: Transfer completion times for 100MB files transfers

rQUIC hides the packet loss signal from the congestion control, potentially
resulting in unfair behaviour towards non-coded connections. All the rQUIC
experiments [Zve+21] were performed using a simple XOR code unable to
handle loss bursts and rQUIC has been evaluated using ns-3 simulations
applying uniformly distributed losses exclusively. On the other side, while FlEC
obtained good simulation results with bursty losses, we observed in Chapter 5
that it could lead to bad results in a real network. To confirm this observation,
we performed real-network experiments using a wired network instead of
our Starlink access point. We obtained a similar performance diminution as
Chapter 5. This is illustrated by Figure 7.1 as a preliminary experiment. In
this Figure, we ran 100MB downloads from an OVH Virtual Private Server
connected at 100Mbps. Downloads were performed using Cloudflare’s quiche
implementation, QUIRL (the solution proposed in this chapter) and PQUIC
with and without the FlEC plugin, all four used the Cubic congestion control.
FlEC was configured for the bulk transfer use-case. The kernel UDP receive
buffers were configured such that no packet loss was due to them being too
small. Not only PQUIC struggled to saturate the link using Cubic, but enabling
FlEC led to performance degradation, with the 90th percentile download taking
nearly three seconds longer with FlEC. This degradation is confirmed with a
Welch hypothesis test providing a p-value of 0.01 when comparing the PQUIC
and FlEC curves. On the other side, both quiche and QUIRL can saturate the
100Mbps link with a median completion time of 8.7 seconds for both, enabling
their use for bulk scenarios in real networks. The improvements of QUIRL
over regular QUIC are explored in more details in this chapter.

The motivation behind the design of QUIRL is the fact that the existing
works were only providing benefits in controlled simulated or emulated envi-
ronments. QUIC-FEC showed bad results for large transfers, rQUIC was not
evaluated with real, non-uniform loss patterns and FlEC shows bad experimen-
tal results in the case of low-loss rate transfers. The PQUIC implementation



7.2. QUIRL Design principles 119

Non-FEC-protected frames

FEC-protected frames

SOURCE_SYMBOL(id=42)

QUIC packet

Source
symbol

42

FEC
Decoder Recovers

lost
symbols

Figure 7.2: Receiving a QUIC packet containing a SOURCE_SYMBOL frame.

used by FlEC is also not evolving and maintained as much as production
QUIC implementations. The goal of this chapter is therefore to propose a FEC
extension providing latency improvements for different QUIC applications in
real networks with real loss patterns.

7.2 QUIRL Design principles

We use the acronym QUIRL to refer to both the FEC extension proposed in
this paper and its implementation. QUIRL introduces a few design changes
compared to FlEC and QUIC-FEC. We first describe how QUIRL identifies the
FEC-protected parts of a QUIC payload. We then explain how QUIRL encodes
repair symbols in QUIC packets. Next, we discuss how QUIRL interacts with
congestion control. We finally address how repair symbols are scheduled
depending on the use-case.

7.2.1 Identifying FEC-protected payloads

Similarly to FlEC, we use a QUIC frame to identify the packet payloads to
be considered as source symbols. We call it the SOURCE_SYMBOL frame.
The difference we introduce with FlEC is that we do not consider anymore
the whole packet payload to be part of the source symbol. Only the frames
coming after the SOURCE_SYMBOL frame in the QUIC payload are part of
a source symbol and are then FEC-protected. The SOURCE_SYMBOL frame
assigns a unique identifier to each source symbol, allowing the receiver to
determine unambiguously which symbols need to be recovered. The reception
of a packet containing a SOURCE_SYMBOL frame is illustrated in Figure 7.2.
The QUIC receiver considers all the FEC-protected frames as part of source
symbol 42. This source symbol is then passed to the FEC decoder that will
recover lost source symbols when possible using the already received repair
symbols. Conversely to QUIC-FEC that needs a specific header field, QUIRL is
fully compatible with QUIC version 1 [RFC9000].



120 Chapter 7. QUIRL: improvements for real applications on real networks

7.2.2 Serializing the repair symbols

Similarly to previous work, QUIRL uses a REPAIR frame to carry the repair
symbols in a QUIC packet. To support different erasure correcting codes, the
payload of a REPAIR frame is an opaque payload that is passed as-is to the
FEC decoder. The format of the repair symbols themselves depends on the
used erasure correcting code.

7.2.3 QUIRL and congestion control

QUIRL does not hide packet losses to the congestion control algorithm, even
when lost source symbols have been recovered. QUIRL generates QUIC ACK
frames only for packets received from the network. QUIRL is thus fully in-line
with the recommendations of RFC9265 [RFC9265]. The REPAIR frames are
congestion-controlled, meaning that they are subject to congestion control
as regular application data. QUIRL does not send REPAIR frames when the
congestion window is full.

QUIRL defines the SOURCE_SYMBOL_ACK frame to explicitly signal
that a source symbol has been received, either from the network or through
FEC recovery. In practice, SOURCE_SYMBOL_ACK frames are only sent for
recovered source symbols, as their reception through the network can also be
deduced from regular ACK frames. When receiving a SOURCE_SYMBOL_ACK
frame, the QUIC sender can remove the recovered data from its retransmission
queue, but the original QUIC packet containing these data is not considered
as received until a regular ACK frame acknowledges it. This frame shares
similarities with QUIC-FEC’s RECOVERED frame. However, QUIC-FEC uses
ACK frames to directly acknowledge recovered packets and the RECOVERED
frame is used to reduce the congestion window afterwards. QUIRL does not
acknowledge packets that were not received from the network in conformance
to RFC9265.

Figure 7.3 shows an example of transfer using QUIRL. The three STREAM
frames sent by the sender are protected by FEC but it is not the case for the
PING frame of Pkt1 since it is placed before the SOURCE_SYMBOL frame
in the packet payload. The repair symbols are transmitted through the two
REPAIR frames carried by Pkt4 and Pkt5. Once both repair symbols are re-
ceived, the STREAM frames of Pkt1 and Pkt3 can be recomputed using the
erasure correcting code and their stream data can be directly delivered to the
application. The PING frame of Pkt1 remains lost as it was not part of the
source symbol and has therefore not been recovered. Pkt2 is acknowledged
using a classical ACK frame as it has been received normally through the
network, but Pkt1 and Pkt3 are not. Source symbols 1 and 3 are acknowledged
using a SOURCE_SYMBOL_ACK frame to prevent the sender from considering
that Pkt1 and Pkt3 have been received from the network. These packets will



7.2. QUIRL Design principles 121

Sender Receiver

Recover
1 and 3

and
deliver

3000 bytes
to the

application

Pkt
1 PING, SOURCE_SYMBOL(1), STREAM0(o�=0)Pkt
2 SOURCE_SYMBOL(2), STREAM0(o�=1000)

Pkt
3 SOURCE_SYMBOL(3), STREAM0(o�=2000)

Pkt
4 REPAIR(protected_symbols=[1..3])

Pkt
5 REPAIR(protected_symbols=[1..3])

Pkt
1

ACK([2]), SOURCE_SYMBOL_ACK([1], [3])

Figure 7.3: Example of FEC-protected transfer using QUIRL, with the first and

third QUIC packets being lost. The FEC-protected data are the three STREAM

frames. They can be recovered without waiting for retransmissions using the

two repair symbols contained in the fourth and fifth packets.

be marked as lost by the QUIC loss detection mechanism but the two lost
STREAM frames they contain will not be retransmitted. The PING frame of
Pkt1 will be retransmitted later.

7.2.4 Scheduling the repair symbols

As discussed in Chapter 5, the best moment to send repair symbols can strongly
vary depending on the application and its traffic pattern. FlEC uses protocol
plugins to define application-tailored redundancy scheduling, inserting differ-
ent plugins depending on the requirements. However, the drawback is that
protocol plugins are significantly more CPU-costly than a native implementa-
tion.

In this chapter, we propose two QUIRL redundancy schedulers that are
adapted respectively to bulk transfers and real-time bursty traffic such as low-
latency video transfers. The schedulers are implemented natively inside the
quiche implementation. This approach is less flexible than FlEC with protocol
plugins. Indeed, QUIRL applications cannot insert their own API functions
unless they recompile quiche and tune it for their use-case. This is not doable
for some applications such as the ones running in web browsers. However, the
native implementation of QUIRL allows us to benefit from better performances
compared to the PQUIC framework. The two schedulers developed here are
articulated around the same no harm principle: avoid sending repair symbols
when new application data can be sent, unless required to meet the latency
objectives of the application. Prioritizing source symbols this way ensures
no harm is caused to bandwidth-demanding applications, only sending repair
symbols during quiescence. The scheduling algorithms for bulk and video
transfers are presented in more details in Sections 7.4.1 and 7.5.



122 Chapter 7. QUIRL: improvements for real applications on real networks

7.3 Implementing QUIRL

QUIRL is built on top of Cloudflare’s quiche implementation [Clo22]. Written
in Rust, quiche is a production QUIC implementation that is already used on
Cloudflare’s edge servers, the curl command-line tool [Curl] and the DNS
resolver of Android version 10 and onwards. Our goal was to make as little
changes to quiche as possible to keep QUIRL maintainable and up-to-date. In
total, QUIRL adds about 1500 lines to quiche. QUIRL adds the encoding of the
new frames and the use of FEC encoders and decoders in the quiche packet
processing loop. We also implemented packet loss estimators to estimate
the network loss conditions during a QUIC connection and integrate this
knowledge in our redundancy scheduler. We provide the FEC encoders and
decoders separately from QUIRL in dedicated Rust crates outside quiche so
that they can be reused by other protocols and other QUIC implementations.
In total, these external network coding crates consist in 12000 lines of Rust
code available for everyone.

7.3.1 Erasure Correcting Codes

In addition to RLC, we also provide QUIRL with the Tetrys erasure correction
code. Tetrys is presented as a patent-free yet powerful fountain error correcting
code [Tou+11]. It adapts the Reed-Solomon encoding algorithm to be used in
an online manner. While the recovery capabilities are more limited than other
fountain codes (cycles can occur in the generation of repair symbols), they are
sufficient for the usually low loss rates encountered on the Internet. The Rust
implementation of both RLC and Tetrys-inspired erasure correcting codes are
part of the code we release publicly and can be used interchangeably without
modifying the application or the protocol implementation. The experiments
described in this chapter rely on the Tetrys-inspired code.

7.3.2 WebTransport

Web browser applications might not be able to directly use QUIC streams and
datagrams as they are limited to the HTTP/3 API [RFC9113]. WebTransport
aims at providing these applications with a stream and datagram API that is
later mapped to QUIC streams and datagrams [FKV23; VJA23]. WebTransport
may rapidly become one of the main usages for QUIC.

To enable QUIRL to be used by a large number of applications, we provide
an implementation of WebTransport and release it publicly, also as an external
crate. The video experiments performed in this article use this WebTransport
crate and show that QUIRL can also deliver benefits in these scenarios. A
promising future work is to use QUIRL together with WebCodecs [W3C23a] for



7.4. Latency-sensitive video streams 123

BurstSize The minimum burst size needed to be sent to trigger
the sending of repair symbols (default: 0 byte).

MaxJitter The maximum loss-induced jitter allowed by the appli-
cation (default: 0 ms).

Table 7.1: Parameters for the bursty redundancy scheduler.

video applications and rely on WebAssembly to propose application-defined
QUIRL redundancy schedulers running in the browser.

7.4 Latency-sensitive video streams

Applications doing real-time media transfers such as video conferencing tend
to regularly send data bursts whose size depends on the type of video frame.
Key video frames (i.e. I-frames for the H264 codec [Wie+03]) often span from
several dozens to several hundreds of kilobytes, while others are significantly
smaller. In the case of a real-time video transfer, it makes sense to send FEC
regularly to ensure a low-latency delivery of each video frame. Depending
on the latency requirements, it might be interesting to protect several video
frames with the same set of repair symbols, similarly to the FlEC scheduler
for delay-constrained messaging.

7.4.1 Redundancy scheduler

We provide a specific redundancy scheduler tailored for this kind of applica-
tions. We allow the application to parametrize the redundancy scheduler by
choosing values for the parameters described in Table 7.1, but they can already
achieve good performance with the default values. These parameters replace
the application-defined API of FlEC that used protocol-plugins.

Using the BurstSize parameter, the application has control over the FEC-
eliciting data, i.e. the data causing the sending of repair symbols. This allows
reducing the redundancy overhead by not protecting small video frames for
instance. The loss of small video frames generally has a lower visual impact
on the video playback than larger frames. The MaxJitter parameter can be
used by the application to specify the maximum affordable data delivery delay.
Low-latency video streaming applications regularly use a playback buffer that
delays the video playback by a few milliseconds to smoothly handle jitter in the
data delivery. Specifying the maximum affordable jitter allows the redundancy
scheduler to adjust the number of video frames protected with the same set of
repair symbols, therefore reducing the FEC overhead. These two parameters
are not mandatory for the application as they do not impact significantly the
recovery capabilities of QUIRL. They only aim at optimizing the overhead



124 Chapter 7. QUIRL: improvements for real applications on real networks

over the connection if the application configures them. The generation of
repair symbols depending on these parameters is depicted in Algorithm 5.
When enough data are sent and need to be protected, the algorithm waits for
MaxJitter before sending the repair symbols. The number of repair symbols is
determined in function of the average number of lost symbols during a loss
event (L) and its standard deviation (𝜎L). This amount is capped by a fraction
of the bytes in flight (𝛽) that we set to 0.3 for the experiments.

Algorithm 5 Repair symbols scheduler for bursty traffic
Require: BustSize, MaxJitter from Table 7.1.
Require: LastBurst, the last sent application data burst.
Require: BIF, the current amount of bytes in flight.
Require: L, the average number of lost symbols during a loss event and 𝜎L

its standard deviation.
if LastBurst.length ≥ BurstSize ∧ 𝑖𝑠𝐴𝑝𝑝𝐿𝑖𝑚𝑖𝑡𝑒𝑑 () then
if Now < LastBurst.sentTime +MaxJitter then
𝑊𝑎𝑘𝑒𝑈𝑝𝐴𝑡 (LastBurst.sentTime +MaxJitter)

else

𝑛 ← min(𝛽 ∗ BIF,L + 2 ∗ 𝜎L)
sendNRepairSymbols(n)

end if

end if

7.4.2 Reducing the latency of GStreamer RTP flows

The goal of this work is to improve the performance of real applications
over actual networks. Baltaci et al. recently showed an interest at using
RTP over QUIC to transmit H264-encoded aerial vehicule videos to perform
remote piloting [Bal+22]. The H.264 video codec defines three types of video
frames [Wie+03]: I, P and B frames. I-frames are the largest as they contain a
full picture. P-frames contain motion vectors to recompute the picture from
one or more previous frames. B-frames contain motion vectors to reconstruct
the picture from previous and future frames. In their work, the videos are
encoded using low-latency settings. Only I-frames and P-frames are sent
since B-frames require an additional latency to be decoded. I-frames are also
regularly sent to frequently refresh the video and cope more easily with frame
losses. We reuse the videos used by Baltaci et al. in our evaluation and assess
how QUIRL can impact the transfer quality. In this context, we analyze the
benefits that QUIRL can bring to an existing video application using GStreamer.
GStreamer is a flexible open source suite used to transfer videos over a network
that was also used by Baltaci et al. for their evaluation. Low-latency streaming



7.4. Latency-sensitive video streams 125

FFmpeg
source

GStreamer
sink

RTP RTPQUIRL

Figure 7.4: FEC-protected relay forwarding GStreamer packets using QUIRL.

is generally achieved by sending the video over RTP. We use FFmpeg [23]
to extract the video frames from the file without re-encoding it and send
it over RTP. The GStreamer suite provides the gst-launch command-line
application allowing receiving a video stream from an RTP source and display
it to the user (GStreamer sink). We implement an RTP relay using QUIRL
as illustrated in Figure 7.4. The relay intercepts packets sent by the FFmpeg
source at one end and sends them through a QUIC connection protected by
FEC using the redundancy scheduler described in Section 7.4.1. The relay
decapsulates the RTP packets at the other end and forwards them to the
GStreamer sink.

The RTP packets are parsed at the relay entry point. Each RTP packet is
placed in its own QUIC stream to avoid head-of-line blocking between packets.
We do not use QUIC datagrams as the RTP packets could be too large to fit
in a single QUIC datagram with some network MTUs. Using several QUIC
streams allows packets to be independently delivered to the RTP receiver and
skipped when they cannot be received on-time. One step further could be
made by sending separate H264 slices [RFC6184] on separate QUIC streams
to further reduce the possible head-of-line blocking inside a single packet.
However, doing so would need a deeper payload parsing on the RTP relay. A
better solution would be a video application totally adapted to the QUIC API,
but this is left as future work.

We study two metrics for the video transfers. The first metric is the video
frames and packets lateness. Video frames have a presentation timestamp
encoded in the RTP packet header. The lateness of an RTP packet is the
difference between the moment it was received and the moment the video
frame would have been shown to the user if no playback buffer was used by the
application. The lateness of a video frame is equal to the lateness of its latest
packet. Network packets can arrive late for several reasons: they can be lost and
retransmitted or they can be delayed by the protocol’s congestion control and
pacing mechanisms, without any packet loss. Applying a playback buffer of 𝑥
milliseconds (e.g. using GStreamer’s rtpjitterbuffer plugin [GStrDoc]) allows
smoothly displaying video frames with a lateness up to 𝑥 milliseconds when
these events occur. The frames with a larger lateness will likely be skipped by



126 Chapter 7. QUIRL: improvements for real applications on real networks

the receiver. Measuring the frame and packets lateness allows directly studying
the latency impact of QUIRL independently of the application behaviour. The
second metric we analyze is the Structured Similarity (SSIM) [Wan+04]. This
state-of-the-art metric also used by Baltaci et al. gives a 0 to 1 similarity
score to assess the visual similarity between the frames displayed by the
GStreamer sink and the frames of the original video. An SSIM of 1 means that
the displayed frame is identical to the original one. SSIM therefore provides a
way to quantify the visual impact of QUIRL to the streaming application. In
these experiments, we set the BurstSize parameter to 5000 bytes, meaning that
video frames smaller than 5000 bytes will not explicitly elicit the sending of
FEC. The rationale is that smaller video frames carry less information, loosing
them has therefore a smaller impact. The MaxJitter parameter is set to 40
milliseconds. With a video displaying 30 frames per second, this means that
after the sending of a FEC-eliciting video frame, the FEC scheduler will wait
for another frame to be sent before sending the repair symbols. This adds a
recovery delay for the first frame but allows protecting several video frames
within a single round of repair symbols.

Adapting quiche for real-time media transfer

We implemented packet pacing on the sender in order to reduce as much
as possible the potential losses caused by sending a large burst of packets
on the network. We carefully configured the UDP buffer sizes such that no
packet was dropped due to the UDP receive buffer capacity. Concerning the
congestion control algorithm, the two algorithms provided by quiche are
Cubic and BBRv1. BBRv1 can be problematic for real-time video transfer as it
regularly decreases its congestion window down to 4 packets to empty the
network buffers. This problem is solved in BBRv2 but it is not yet supported
by quiche. We therefore use Cubic. Since Cubic was not designed for real-time
video transfer either, we added a one-line change to Cubic to adopt a behaviour
similar to real-time congestion controllers such as SCReAM [RFC8298]. It
allows increasing the congestion window upon receiving acknowledgements
when the bytes in flight exceed 66% of the congestion window instead of
requiring the congestion window to be fully utilized. This behaviour is not
uncommon and is especially useful for real-time flows that send bursts of
varying size but that rarely utilize the full capacity of their congestion window.
This behaviour has no impact for bulk, bandwidth-intensive flows as their
congestion window is always fully utilized.

7.4.3 Starlink setup

Since we observed in Chapter 6 that losses are common on Starlink, especially
on the upload path [Mic+22; Ma+22; Kas+22], we reuse this Starlink vantage



7.4. Latency-sensitive video streams 127

Internet

Starlink terminalHost Server (CloudLab)

Figure 7.5: Starlink setup used in the real-network experiments.

50ms 75ms 100ms 200ms 500ms
QUIC 86 61 64 68 69
QUIRL 69 55 65 62 63

RTP 69 57 78 71 63

Table 7.2: Number of video transfers performed per solution and per

GStreamer playback buffer size.

point for our experiments. We connect a laptop to the Starlink terminal and
setup a Cloudlab server in Utah [Dup+19], as illustrated in Figure 7.5. The
round-trip time between our Starlink-connected laptop and the cloudlab server
is around 150 milliseconds.

7.4.4 Real network experiments results

This section analyzes the results obtained from video transfers performed over
our Starlink access. In total, we performed 1000 video transfers. These transfers
were made using three different solutions: QUIC, QUIRL, and the classical RTP
used by GStreamer and FFmpeg. We also perform experiments with different
playback buffer sizes for the GStreamer sink using GStreamer’s rtpjitterbuffer
plugin. A larger playback buffer induces a higher latency between the source
and the sink which is often undesirable. Since the solution used was drawn at
random for each experiment, Table 7.2 summarizes the number of experiments
performed for each solution and for each playback buffer.

Figure 7.6 shows the experimental Cumulative Distribution Function (CDF)
of the RTP packets and video frames latenesses aggregated over all video
transfers. As frames and packets lateness are computed on our relay, they
cannot be computed for regular RTP transfers which do not pass through the
relay.

Similarly to Chapter 6, we observed approximately 0.4% of packet loss on
our Starlink access point on the upload path when there is no load on the link.
By looking at the left graph, QUIRL keeps around 0.4% more packets below a
150 milliseconds lateness compared to QUIC. While this seems a small amount
of packets, the graph on the right illustrates that only a small proportion of



128 Chapter 7. QUIRL: improvements for real applications on real networks

0 200 400
Packets lateness (ms)

0.985

0.990

0.995

1.000

CD
F

0 200 400
Frames lateness (ms)

0.900

0.925

0.950

0.975

1.000

QUIC
QUIRL

Figure 7.6: RTP packets and video frames lateness distribution for video

transfers over Starlink.

50 75 100 200 500
GStreamer playback buffer (ms)

0.9

0.95

1

Av
er

ag
e

SS
IM

pe
rv

id
eo

RTP QUIC QUIRL

Figure 7.7: Average SSIM per transferred video for different playback buffer

sizes.

late packets can have a significantly larger proportional impact when it comes
to the lateness of the video frames themselves. Indeed, some video frames are
composed of several of dozens of packets and losing a single packet of these
frames impacts the lateness of the entire video frame. On the right graph,
more than 98% of the frames have a lateness under 100ms using QUIRL, while
the 98th percentile for QUIC is 221ms, more than doubling the playback buffer
required to deliver the same amount of frames on-time.

Although frames and packets latenesses are valuable metrics to quantify
the latency improvements brought by QUIRL, it is also interesting to look at
the actual impact on the application. Figure 7.7 shows the distribution of the
average SSIM for all video transfers using different GStreamer playback buffer
sizes. The average SSIM of a video transfer is obtained by averaging the SSIM of
every video frame sent during this transfer. A higher average SSIM corresponds
to a higher visual fidelity of the video transfer on average. We observe that



7.4. Latency-sensitive video streams 129

50 75 100 200 500
GStreamer playback buffer (ms)

0.00

0.25

0.50

0.75

1.00

Ra
tio

of
pe

rfe
ct

fra
m

es

RTP QUIC QUIRL

Figure 7.8: Per transfer ratio of perfect frames for different playback buffer

sizes.

QUIRL provides better average SSIM scores for every studied playback buffer
size. Gradually enlarging the playback buffer allows QUIRL to improve the
average SSIM further, with a median average SSIM score of respectively 0.97,
0.98, 0.99, 0.995 and 1 for the 50ms, 75ms, 100ms 200ms and 500ms playback
buffer sizes. Conversely, QUIC only improves the average SSIM when the
playback buffer size exceeds the RTT of the connection, allowing the protocol
to recover from losses using retransmissions. RTP provides similar average
SSIM results regardless of the playback buffer size as the default RTP sender
performs no loss recovery whatsoever.

We also computed the ratio of perfect frames (frames with an SSIM of 1)
for each video transfer. Figure 7.8 shows the distribution of the ratio of perfect
frames across the different video transfers. As H264 P-frames depend on other
video frames, a missing frame can have a negative impact on the frames that
follow, causing a cascading effect. In median, a video had more than 70% of
perfect frames when using QUIRL and QUIC with the 50ms playback buffer.
This median ratio falls down to 45% with RTP that does not pace the sent
packets as QUIC does (note that RTP still achieves an average SSIM of 0.95
as illustrated in Figure 7.7). Comparing Figure 7.7 and Figure 7.8, we can see
that with the 50ms playback buffer, QUIRL obtains a similar perfect frames
ratio to QUIC but a better average SSIM. One reason is that although lost
symbols could be recovered using FEC (improving the average SSIM), the
50ms playback buffer is too small for large frames (>70kB) to be fully received
on-time even without packet losses due to the available upload bandwidth
that varied between 8 and 15Mbps. Those partially-received large frames in
turn have an impact on the following frames that may be fully received but
depend on the larger frame to be perfectly decoded. With the 75ms and 100ms
playback buffers, video transfers using QUIRL had respectively more than
82% and 93% of perfect frames in median, which is 12% and 23% better than



130 Chapter 7. QUIRL: improvements for real applications on real networks

with the 50 ms buffer. With this additional time, QUIRL can deliver more
video-frames on-time when more repair symbols are needed to perform loss
recovery. On the other hand, transfers using QUIC and RTP obtain similar
performance than with the 50ms playback buffer. The price to pay for these
latency improvements is an increase in the required bandwidth. With the
BurstSize and MaxJitter parameters respectively set to 5000 bytes and 40
milliseconds, the video transfers using QUIRL in these experiments require
slightly under 4Mbps (including QUIC headers and control information) while
they require 3.2Mbps with QUIC.

With the 500 ms playback buffer, both QUIC and QUIRL can obtain 100%
of unaltered frames in median, at the price of an important delay between
the GStreamer source and sink. With such a latency, the video transfer is
arguably not real-time anymore. The performance of RTP stays unchanged as
no retransmission is performed whatsoever.

7.5 HTTP/3 objects

We now focus on HTTP/3 and the exchange of web objects of different sizes.
It is worth remembering that in this scenario, every unused repair symbol
results in a waste of network resource, as a new source symbol could have
been sent instead. This has the effect of increasing the completion time of that
kind of transfers. As packet losses are varying and unpredictable, there is a
high probability of sending unneeded repair symbols even when the amount of
repair symbols matches the estimated loss rate of the network. Inspired by the
results of FlEC, we here focus on recovering from last-flight losses and losses
occurring when the sender is flow control-blocked. Our redundancy scheduler
for HTTP/3 objects, depicted in Algorithm 6, is thus straightforward. We send
the REPAIR frames during quiescence periods, i.e. when no application data
can be sent. This happens either when the sender is blocked by the stream flow
control or when all the application data have been sent (but not necessarily
been acknowledged yet). The repair symbols protect every source symbol
currently in flight.

As quiche can be used as a QUIC backend for curl, we built a recent version
of curl and linked it with QUIRL. A tiny code change was required on the
curl client to ensure it correctly sends the packets containing REPAIR frames
during uploads.

Curl is used for HTTP/3 transfers of various sizes. One way to improve
curl’s performance is to reduce the Tranfer Completion Time (TCT): the
time between the start of the HTTP/3 request and the complete reception
of the response. The amount of redundancy is also determined by the loss
characteristics of the link (L and 𝜎L) and capped by a proportion of the bytes
in flight (𝛽), set to 0.3 in the experiments.



7.5. HTTP/3 objects 131

Algorithm 6 Repair symbols scheduler for HTTP/3 objects
Require: BIF, the current amount of bytes in flight.
Require: L, the average number of lost symbols during a loss event and 𝜎L

its standard deviation.
if 𝑖𝑠𝐴𝑝𝑝𝐿𝑖𝑚𝑖𝑡𝑒𝑑 () then
𝑛 ← min(𝛽 ∗ BIF,L + 2 ∗ 𝜎L)
sendNRepairSymbols(n)

end if

In Section 7.5.1, we evaluate QUIRL on our Starlink access. We then
validate our results on 200 different network configurations in Section 7.5.2
using Mininet [Han+12].

7.5.1 Improving curl’s TCT over Starlink

We analyze the TCT of curl GET and POST requests of short (50kB) and
long (10MB) files, with and without FEC. We use the same network setup
as described in the beginning of Section 7.4.3. We captured all the packets
exchanged during every transfer to analyze the results in details. Ideally,
QUIRL should provide significant performance improvement (in the order of
magnitude of one RTT) for transfers experiencing losses during their last flight
of packets and small to no performance degradation for loss-free transfers.
By analyzing the packet captures, we therefore classified the 50kB transfers
into three categories: No loss, Losses and Last flight losses. The Losses category
contains every transfer that experienced at least one packet loss. Last flight
losses only contains the transfers experiencing at least one packet loss during
the last round-trip of packets containing application data.

Figure 7.9 shows the distribution of the transfer completion time for short
file transfers. The top graph shows the upload results and the bottom one
the download results. We can quickly verify the no-harm approach of QUIRL:
there is no noticeable difference for downloads that experienced no loss. The
benefits appear along with packet losses, especially when they happen during
the last flight. The median upload (resp. download) completion time in the Last
flight losses category is 600 (resp. 378) milliseconds for QUIRL and 756 (resp.
528) milliseconds for QUIC. The median difference in this category is closely
related to the connection’s round-trip time for both downloads and uploads.
It is therefore easy to see the interest of using QUIRL for short transfers
especially for long delay communications as it can significantly reduce the
transfer completion time by saving a precious round-trip at the cost of sending
a few more packets. On average, QUIRL sent 68 packets for uploads and 63
packets for downloads. QUIC sent 53 packets for uploads and 49 packets for



132 Chapter 7. QUIRL: improvements for real applications on real networks

0.50
0.75
1.00
1.25

tc
t U

P(
s) QUIC

QUIRL

No loss Losses Last flight losses

0.50
0.75
1.00
1.25

tc
t D

O
W

N
(s)

Figure 7.9: Transfer completion times for 50kB files transfers

downloads.
As discussed earlier, the relative impact of tail losses on longer transfers

is significantly lower. Figure 7.10 shows the CDF of the TCT of 10MB down-
loads and uploads using QUIRL and QUIC on our Starlink setup. Since repair
symbols are mostly sent at the end of the transfer, the redundancy does not
impact negatively the TCT of downloads. On the upload side, we observe a
slight improvement of QUIRL with a median upload completion time of 13.012
seconds versus 13.295 seconds for QUIC. A Welch hypothesis test comparing
the two upload curves results in a p-value of 0.0054, confirming the differ-
ence between these two distributions. This can be explained by the default
receive window size of the quiche HTTP/3 server implementation. While the
initial_max_data QUIC transport parameter is set to 10MB by default,
initial_max_stream_data_uni governating the amount of bytes that
can be sent over an unidirectional stream is set to 1MB. This is not large enough
to carry the entire file and requires regular sending of MAX_STREAM_DATA
frames by the receiver to update the stream flow control limits. Packet losses
may prevent the receiver to empty its receive buffer and subsequently send
the flow control updates soon enough to avoid the sender from being flow
control-blocked. Sending REPAIR frames when being flow control-blocked
helps the receiver to quickly recover lost packets and unblocks the sender
sooner. This case is analogous to the buffer-limited transfer scenario explored
in FlEC, proving that this scenario can happen in practice. We then performed
other experiments manually setting the initial_max_stream_data_uni
parameter to 10 MB on the server. This solved this flow control problem for
QUIC uploads. Since the transfer size and the number of used streams is not
known by QUIC at connection establishment, being flow-control blocked on
a single stream while still having buffer space on the global connection can
happen in the wild, especially for applications relying on the default settings



7.5. HTTP/3 objects 133

5 10 15 20 25
Transfer completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QUIC DL
QUIRL DL
QUIC UL
QUIRL UL

Figure 7.10: TCT distribution for 10MB downloads on our Starlink setup.

of the QUIC implementation. Sending a few REPAIR frames when being flow
control-blocked on a single stream can help solving this seamlessly without
fine-tuning the per-stream flow control limits of QUIC. On the download
side, we do not see much difference between the two distributions, and this is
confirmed by the hypothesis test providing a p-value of 0.47 when comparing
them. This is because packet losses are less frequent on the download path
(we experienced 0.2% of losses during downloads while 1.2% during uploads),
making the sender nearly never blocked by flow control. In total, the QUIRL
sender added a 3% (resp. 5%) redundancy overhead for 10MB downloads (resp.
uploads).

7.5.2 Exploring diverse network configurations with Mininet

After these positive latency results with our Starlink network access, we
now explore a wide variety of network configurations using the Mininet
network emulation framework. The objective is to study the performance
with several delay and bandwidth setups. We also explicitly evaluate QUIRL
in the presence of AQM solutions such as FQ-CoDel, as sending more data
might cause pressure and cause packet loss when done uncautiously. We
do so by following the experimental design approach [Fis49] already used
in Chapters 2, 4 and 5. The experimental setup is illustrated by Figure 7.11.
The network parameters are randomly chosen from wide ranges of values,
defined in Table 7.3. The 𝑃𝐺𝐵 and 𝑃𝐵𝐺 are the parameters of the Gilbert loss
markov model, already used in Chapter 5. 𝑃𝐺𝐵 (resp. 𝑃𝐵𝐺 ) is the transition
probability from the Good to Bad (resp. Bad to Good) states. The network
delay and packet losses are applied using netem. AQM is performed using
Linux’s FQ-CoDel [RFC8290] to prevent abnormal bufferbloat on the network.

To ensure sampling evenly the parameters space with a tractable number
of experiments, we rely on the WSP algorithm [SCS12] that samples evenly



134 Chapter 7. QUIRL: improvements for real applications on real networks

Host Server

{ rtt, bw, PGB, PBG }

Figure 7.11: Experimental design setup using Mininet.

rtt bw 𝑃𝐺𝐵 𝑃𝐵𝐺

min 5 ms 5 Mbps 0 0.2
max 200 ms 100 Mbps 0.02 1

Table 7.3: Values ranges for the experimental design experiments.

the parameters space. This gives 200 distinct network configurations for our
Mininet setup. Since the network is symmetric, we focus on downloads, as
uploads lead to similar results.

To study more precisely the impact of the loss pattern during the Mininet
experiments, we implement and load a modified version of the netem Linux
kernel module that can be seeded in order to reproduce exactly the same loss
pattern for several experiments. For 50kB transfers, QUIRL and QUIC have
a very similar traffic pattern. We can therefore directly compare two 50kB
experiments being run on the same network configuration and netem seed.
For each network configuration and each solution, we performed 5 transfers,
each with a different seed. For each seed, we computed the ratio between
QUIRL and QUIC’s TCT. A ratio below 1 (resp. above 1) means that the transfer
completed faster with QUIRL (resp. QUIC) for this setup. Figure 7.12 shows the
distribution of the TCT ratio for every network configuration and seed. As we
can see, experiments with the same network configuration that experienced no
packet loss obtain similar results with QUIC and QUIRL as they systematically
have a TCT ratio of 1. Improvements can be seen when losses occur, especially
upon last flight losses.

No loss Losses Last flight losses
0.2

0.5

1.0

2.0

5.0

tc
t q

ir
l

tc
t q

ic

Figure 7.12: TCT ratio for 50kB transfers on our Mininet setup.



7.6. Conclusion 135

20 40 60 80 100 120
Transfer completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QUIC
QUIRL

Figure 7.13: TCT distribution for 10MB downloads on our Mininet setup.

Comparing experiments one-by-one for 10MB transfers is more compli-
cated since QUIRL and QUIC’s traffic pattern become different on the long
run as QUIC does not send REPAIR frames. We therefore analyze the global
distribution of the transfer completion time. Similarly to our Starlink measure-
ments in Section 7.5.1, we observe a benefit in using QUIRL for the same flow
control reasons. The initial receive window of the curl client is 128 kilobytes,
increasing gradually during the transfer. With such an initial receive window,
the sender may be flow control-blocked several times during the download
upon packet loss and sending repair symbols once no more stream data can be
sent helps unblocking the window sooner, providing a significant advantage
to QUIRL in many cases.

7.6 Conclusion

In this chapter, we leveraged the lessons learned from QUIC-FEC and FlEC
and provided a FEC-enabled loss recovery mechanism for QUIC bringing
latency benefits to real applications over real networks. QUIRL allows adapting
the redundancy scheduling to both the network loss characteristics and the
application’s traffic and requirements. We have implemented QUIRL inside
Cloudflare’s quiche which is already largely deployed on smartphones and
servers. We have evaluated QUIRL using both real measurements on Starlink
and reproducible experiments on Mininet that cover a wide range of scenarios.
Our evaluations using two popular applications demonstrated that QUIRL
provides a lower latency than QUIC when losses occur without causing harm
in loss-free scenarios. We also showed that QUIRL does not suffer from the
performance issues we observed with FlEC. These performance issues were
the price to pay for the flexibility of the protocol plugins.

QUIRL integrates the different concepts introduced during the previous
chapters. It responds fairly to congestion events by announcing unambigu-



136 Chapter 7. QUIRL: improvements for real applications on real networks

ously symbols recoveries. QUIRL is also adaptive in several ways. It first
adapts to the channel conditions by tracking the loss characteristics of the
network. Furthermore, its redundancy scheduling algorithm can be adapted
to the application needs and traffic pattern. Despite being slightly less flexible
than FlEC, QUIRL is the first FEC-enabled QUIC loss recovery mechanism
providing actual benefits in real-world scenarios.



Conclusion 8

During this thesis, we incrementally built a FEC-enabled loss recovery mecha-
nism for the QUIC protocol. Each chapter explored different aspects of the
solution. Starting from a first prototype sending a fixed amount of redundancy,
we took care step by step of new aspects and problematics when adding FEC to
this modern multi-purpose transport protocol. We first handled the congestion
fairness issues related to the loss recovery mechanism. We then proposed a
solution to deploy easily such a heavy extension without having to wait for
updates of QUIC clients and servers by their maintainers. We subsequently
proposed a version of our FEC-enabled loss recovery mechanism that is adap-
tive to both the channel characteristics and the application’s requirements.
Finally, after exploring in details a real lossy network, we developed an effi-
cient and mature implementation of our loss recovery mechanism providing
benefits for existing network applications over real networks, implementing
different redundancy scheduling behaviours depending on the application’s
requirements. While this thesis does a comprehensive study of adding of FEC
to the QUIC protocol, several aspects remain to be explored in the future.

The most promising future work is the conjoint use of Forward Erasure
Correction techniques together with Multipath QUIC [DB17; Liu+23] to sta-
bilize the latency guarantees of the protocol over a set of heterogeneous
networks. Multipath allows the FEC-mechanism to go further than simple
loss recovery. For instance, some networks such as cellular or Wi-Fi can suffer
from an important delay jitter [MB21b]. Even if the delayed packets are not
lost, repair symbols can be sent on other network paths to ensure the lowest
data delivery delay without the need to duplicate every sent packet on all
available paths. Aside from that, the loss events occurring on such networks
often cause a small silent period due for instance to Wi-Fi retransmissions
on the MAC layer [MB21b]. These loss events are difficult to recover with
FEC as the repair symbols will likely arrive after that silent period. The delay
induced by Wi-Fi retransmissions therefore cannot be recovered by sending
repair symbols on the same path. A multipath protocol enables recovering
this kind of losses by sending the repair symbols on another network path.

Now that we implemented a functional extension of our FEC-enabled
loss recovery mechanism, we want to explore how new media applications
can leverage the concepts developed in this thesis to obtain good latency

137



138 Chapter 8. Conclusion

guarantees over QUIC. The current best candidate is the MOQT protocol,
intended to transport low latency media over QUIC [Law+23]. One approach
would be to implement MOQT on top of our QUIRL implementation. Another
approach would be to implement the concepts of QUIRL directly inside the
MOQT protocol itself.

Additionally, we want to explore how FEC capabilities could be exposed to
applications running in web browsers. Providing ways to protect the applica-
tion data over the WebTransport API would allow simplifying significantly the
protocol stack of web browsers. Applications would rely on the QUIC trans-
port protocol only while current media applications currently use WebRTC,
which itself needs both RTP and SCTP to implement its full set of features.
Relying on QUIC would also provide a secure transport protocol by design to
these applications.

The QUIC protocol has also been considered as a good candidate for en-
suring modern multicast communications [HPF22; NMB22]. Compared to
SR-ARQ, the use of FEC can bring significant benefits to multicast commu-
nications as repair symbols make no assumption on the position of the lost
packets. Several multicast receivers can therefore encounter packet losses on
different packets and still recover these packets using the same repair symbols
sent by the source.



Bibliography

[21] Quiche. https://quiche.googlesource.com/quiche
/+/refs/heads/main, file quic/tools/quic_client_base.cc.
commit: 98966fd9b7183bcdb42ce78e58be40bcf6d68493. 2021.

[22a] Browsertime. 2022. url: https://www.sitespeed.io/do
cumentation/browsertime/ (visited on 05/13/2022).

[22b] Disney+ - Internet speed recommendations. 2022. url: https:
//help.disneyplus.com/csp?id=csp_article_con
tent&sys_kb_id=bb07d3cd1b8d0010b8651f861a4bc
bfd (visited on 05/13/2022).

[22c] Netflix - Internet connection speed recommendations. 2022. url:
https://help.netflix.com/en/node/306 (visited on
05/13/2022).

[22d] NVIDIA GeForce Now System Requirements. 2022. url: https:
//www.nvidia.com/it-it/geforce-now/system-re
qs (visited on 05/13/2022).

[22e] RIPE Atlas. 2022. url: https://atlas.ripe.net/ (visited
on 05/13/2022).

[22f] Space.com - SpaceX lofts 49 Starlink internet satellites to orbit in
1st launch of 2022. 2022. url: https://www.space.com/s
pacex-starlink-launch-success-january-2022
(visited on 05/13/2022).

[22g] Speed Index. 2022. url: https://web.dev/speed-index/
(visited on 05/13/2022).

[22h] Speedtest CLI. 2022. url: https://www.speedtest.net
/it/apps/cli (visited on 05/13/2022).

[22i] Starlink. 2022. url: https://www.starlink.com/ (visited
on 05/13/2022).

[22j] Tixeo, secure video conferencing. https://www.tixeo.com
/. 2022.

[22k] Website Traffic Analysis & Competitive Intelligence, SimilarWeb.
2022. url: https://www.similarweb.com/ (visited on
05/13/2022).

139

https://quiche.googlesource.com/quiche/+/refs/heads/main
https://quiche.googlesource.com/quiche/+/refs/heads/main
https://www.sitespeed.io/documentation/browsertime/
https://www.sitespeed.io/documentation/browsertime/
https://help.disneyplus.com/csp?id=csp_article_content&sys_kb_id=bb07d3cd1b8d0010b8651f861a4bcbfd
https://help.disneyplus.com/csp?id=csp_article_content&sys_kb_id=bb07d3cd1b8d0010b8651f861a4bcbfd
https://help.disneyplus.com/csp?id=csp_article_content&sys_kb_id=bb07d3cd1b8d0010b8651f861a4bcbfd
https://help.disneyplus.com/csp?id=csp_article_content&sys_kb_id=bb07d3cd1b8d0010b8651f861a4bcbfd
https://help.netflix.com/en/node/306
https://www.nvidia.com/it-it/geforce-now/system-reqs
https://www.nvidia.com/it-it/geforce-now/system-reqs
https://www.nvidia.com/it-it/geforce-now/system-reqs
https://atlas.ripe.net/
https://www.space.com/spacex-starlink-launch-success-january-2022
https://www.space.com/spacex-starlink-launch-success-january-2022
https://web.dev/speed-index/
https://www.speedtest.net/it/apps/cli
https://www.speedtest.net/it/apps/cli
https://www.starlink.com/
https://www.tixeo.com/
https://www.tixeo.com/
https://www.similarweb.com/


140 BIBLIOGRAPHY

[23] “FFmpeg”. In: (2023). http://www.ffmpeg.org.
[3GP19] 3GPP. Release description; Release 15. Technical Report (TR)

21.915. Version 15.0.0. 3rd Generation Partnership Project
(3GPP), Oct. 2019.

[AB18] V. Arun and H. Balakrishnan. “Copa: Practical delay-based con-
gestion control for the internet”. In: 15th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 18).
2018, pp. 329–342.

[al22] M. S. et al. “A QUIC implementation in pure go.” https://g
ithub.com/quic-go/quic-go. 2022.

[App18] Apple. “Improving Network Reliability Using Multipath TCP”.
https://developer.apple.com/documentation/fo
undation/urlsessionconfiguration/improving_n
etwork_reliability_using_multipath_tcp. 2018.

[Aqe+20] W. Aqeel, B. Chandrasekaran, A. Feldmann, and B. M. Maggs.
“On landing and internal web pages: The strange case of jekyll
and hyde in web performance measurement”. In: Proceedings
of the ACM Internet Measurement Conference. 2020, pp. 680–
695.

[ARS16] M. Agiwal, A. Roy, and N. Saxena. “Next generation 5G wire-
less networks: A comprehensive survey”. In: IEEE Communi-
cations Surveys & Tutorials 18.3 (2016), pp. 1617–1655.

[Ast+22] V. Astrauskas, A. Bílý, J. Fiala, Z. Grannan, C. Matheja, P.
Müller, F. Poli, and A. J. Summers. “The Prusti Project: Formal
Verification for Rust (invited)”. In: NASA Formal Methods (14th
International Symposium). Springer, 2022, pp. 88–108.

[ATT] "AT&T". Fixed Wireless Internet. https://www.att.com/i
nternet/fixed-wireless/.

[AW18] N. Amit and M. Wei. “The design and implementation of hyper-
upcalls”. In: 2018 USENIXAnnual Technical Conference (USENIX
ATC 18). 2018, pp. 97–112.

[Bal+22] A. Baltaci, H. Cech, N. Mohan, F. Geyer, V. Bajpai, J. Ott, and
D. Schupke. “Analyzing real-time video delivery over cellular
networks for remote piloting aerial vehicles”. In: Proceedings of
the 22nd ACM Internet Measurement Conference. 2022, pp. 98–
112.

http://www.ffmpeg.org
https://github.com/quic-go/quic-go
https://github.com/quic-go/quic-go
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://www.att.com/internet/fixed-wireless/
https://www.att.com/internet/fixed-wireless/


BIBLIOGRAPHY 141

[BBK17] K. Bhargavan, B. Blanchet, and N. Kobeissi. “Verified models
and reference implementations for the TLS 1.3 standard can-
didate”. In: 2017 IEEE Symposium on Security and Privacy (SP).
IEEE. 2017, pp. 483–502.

[Bel+] M. Belshe et al. SPDY protocol. https://www.chromium.or
g/spdy/spdy-protocol/spdy-protocol-draft3-1.
Accessed: 2022-02-09.

[Bie93] E. W. Biersack. “Performance evaluation of forward error cor-
rection in an ATM environment”. In: IEEE JSAC 11.4 (1993),
pp. 631–640.

[Bis+05] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K.
Wansbrough. “Rigorous specification and conformance testing
techniques for network protocols, as applied to TCP, UDP,
and sockets”. In: ACM SIGCOMM Computer Communication
Review. Vol. 35. 4. ACM. 2005, pp. 265–276.

[BK23] M. Brockschmidt and H. Khlaaf. T2 Temporal Prover. http:
//mmjb.github.io/T2/. Jan. 2023.

[BLK04] L. Baldantoni, H. Lundqvist, and G. Karlsson. “Adaptive end-
to-end FEC for improving TCP performance over wireless
links”. In: 2004 IEEE International Conference on Communica-
tions (IEEE Cat. No. 04CH37577). Vol. 7. IEEE. 2004, pp. 4023–
4027.

[BMG99] A. Begel, S. McCanne, and S. L. Graham. “BPF+: Exploiting
global data-flow optimization in a generalized packet filter
architecture”. In: 29.4 (1999), pp. 123–134.

[BOP94] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. “TCP Vegas:
New techniques for congestion detection and avoidance”. In:
Proceedings of the conference on Communications architectures,
protocols and applications. 1994, pp. 24–35.

[Bra17] L. Brakmo. “TCP-BPF: Programmatically tuning TCP behavior
through BPF”. In: NetDev 2.2 (2017).

[Bye+98] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. “A digital
fountain approach to reliable distribution of bulk data”. In:
ACM SIGCOMM Computer Communication Review 28.4 (1998),
pp. 56–67.

[Cam+14] D. Camara, H. Tazaki, E. Mancini, T. Turletti, W. Dabbous, and
M. Lacage. “DCE: Test the real code of your protocols and ap-
plications over simulated networks”. In: IEEE Communications
Magazine 52.3 (2014), pp. 104–110.

https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://mmjb.github.io/T2/
http://mmjb.github.io/T2/


142 BIBLIOGRAPHY

[Car+16a] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacob-
son. “Bbr: Congestion-based congestion control: Measuring
bottleneck bandwidth and round-trip propagation time”. In:
Queue 14.5 (2016), pp. 20–53.

[Car+16b] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo. “Analysis
and design of the google congestion control for web real-time
communication (WebRTC)”. In: Proceedings of the 7th Interna-
tional Conference on Multimedia Systems. 2016, pp. 1–12.

[Car+17] N. Cardwell, Y. Cheng, S. H. Yeganeh, and V. Jacobson. BBR
Congestion Control. Internet-Draft draft-cardwell-iccrg-bbr-
congestion-control-00. Work in Progress. Internet Engineering
Task Force, 2017. 34 pp.

[Car+22] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, and V. Jacob-
son. BBR Congestion Control. Internet-Draft draft-cardwell-
iccrg-bbr-congestion-control-02. Work in Progress. Internet
Engineering Task Force, Mar. 2022. 66 pp.

[CGK10] P. Chini, G. Giambene, and S. Kota. “A survey on mobile satel-
lite systems”. In: International Journal of Satellite Communica-
tions and Networking 28.1 (2010), pp. 29–57.

[Chu+18] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman, C.
MacCárthaigh, S. Magill, E. Mertens, E. Mullen, T. Serdar, A.
Tomb, and E. Westbrook. “Continuous formal ffverification of
Amazon s2n”. In: International Conference on Computer Aided
Verification. Springer. 2018, pp. 430–446.

[CLM15] J. Cloud, D. Leith, and M. Médard. “A coded generalization of
selective repeat ARQ”. In: INFOCOM2015. IEEE. 2015, pp. 2155–
2163.

[Clo+13] J. Cloud et al. “Multi-path TCP with network coding for mobile
devices in heterogeneous networks”. In: VTC, 2013 IEEE. IEEE.
2013, pp. 1–5.

[Clo22] Cloudflare. “quiche”. https://github.com/cloudflare
/quiche. 2022.

[CM19] R. Chandra and T. Moscibroda. “Perspective: White space net-
working with Wi-Fi like connectivity”. In: ACM SIGCOMM
Computer Communication Review 49.5 (2019), pp. 107–109.

[Coh+20] A. Cohen, D. Malak, V. B. Bracha, and M. Médard. “Adaptive
Causal Network Coding With Feedback”. In: IEEE Transactions
on Communications 68.7 (2020), pp. 4325–4341. doi: 10.1109
/TCOMM.2020.2989827.

https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://doi.org/10.1109/TCOMM.2020.2989827
https://doi.org/10.1109/TCOMM.2020.2989827


BIBLIOGRAPHY 143

[CP07] P. Chaporkar and A. Proutiere. “Adaptive network coding and
scheduling for maximizing throughput in wireless networks”.
In: MobiCom 2007. ACM. 2007, pp. 135–146.

[CPR06] B. Cook, A. Podelski, and A. Rybalchenko. “TERMINATOR:
beyond safety”. In: International Conference on Computer Aided
Verification. Springer. 2006, pp. 415–418.

[CSA03] B. Cavusoglu, D. Schonfeld, and R. Ansari. “Real-time adaptive
forward error correction for MPEG-2 video communications
over RTP networks”. In: 2003 International Conference on Mul-
timedia and Expo. ICME’03. Proceedings (Cat. No. 03TH8698).
Vol. 3. IEEE. 2003, pp. III–261.

[Cui+14] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang. “FMTCP: A
fountain code-based multipath transmission control protocol”.
In: IEEE/ACM Transactions on Networking 23.2 (2014), pp. 465–
478.

[Cur+23] L. Curley, K. Pugin, S. Nandakumar, and V. Vasiliev. Media over
QUIC Transport. Internet-Draft draft-lcurley-moq-transport-
00. Work in Progress. Internet Engineering Task Force, May
2023. 26 pp.

[Curl] Curl, command line tool and library for transferring data with
URLs. https://curl.se/. Accessed: 2023-04-12.

[DB17] Q. De Coninck and O. Bonaventure. “Multipath QUIC: Design
and evaluation”. In: Proceedings of the 13th international con-
ference on emerging networking experiments and technologies.
2017, pp. 160–166.

[Det+13] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B.
Donnet. “Revealing middlebox interference with tracebox”.
In: Proceedings of the 2013 conference on Internet measurement
conference. 2013, pp. 1–8.

[Dup+19] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar,
and P. Mishra. “The Design and Operation of CloudLab”. In:
Proceedings of the USENIX Annual Technical Conference (ATC).
July 2019, pp. 1–14.

[ED19] K. Edeline and B. Donnet. “A bottom-up investigation of the
transport-layer ossification”. In: 2019 Network Traffic Measure-
ment and Analysis Conference (TMA). IEEE. 2019, pp. 169–176.

https://curl.se/


144 BIBLIOGRAPHY

[Edg15] J. Edge. “A seccomp overview”. In: Linux Weekly News (Sept.
2015). https://old.lwn.net/Articles/656307/.

[Ege+11] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. “PiOS: Detecting
Privacy Leaks in iOS Applications”. In:Network and Distributed
System Security Symposium (NDSS’11). 2011, pp. 177–183.

[Egg20] L. Eggert. Towards Securing the Internet of Things with QUIC.
Tech. rep. EasyChair, 2020.

[Ell63] E. O. Elliott. “Estimates of error rates for codes on burst-noise
channels”. In: The Bell System Technical Journal 42.5 (1963),
pp. 1977–1997.

[Fer+18] S. Ferlin, S. Kucera, H. Claussen, and Ö. Alay. “MPTCP meets
FEC: Supporting latency-sensitive applications over heteroge-
neous networks”. In: IEEE/ACM Transactions on Networking
26.5 (2018), pp. 2005–2018.

[FHK18] A. Frömmgen, J. Heuschkel, and B. Koldehofe. “Multipath
TCP scheduling for thin streams: Active probing and one-way
delay-awareness”. In: 2018 IEEE International Conference on
Communications (ICC). IEEE. 2018, pp. 1–7.

[Fis49] R. A. Fisher. The design of experiments. Oliver and Boyd, 1949.
[FJ95] S. Floyd and V. Jacobson. “Link-sharing and resource manage-

ment models for packet networks”. In: IEEE/ACM transactions
on Networking 3.4 (1995), pp. 365–386.

[FKV23] A. Frindell, E. Kinnear, and V. Vasiliev. WebTransport over
HTTP/3. Internet-Draft draft-ietf-webtrans-http3-04. Work in
Progress. Internet Engineering Task Force, Jan. 2023. 16 pp.

[FL20] N. Feamster and J. Livingood. “Measuring internet speed: cur-
rent challenges and future recommendations”. In: Communi-
cations of the ACM 63.12 (2020), pp. 72–80.

[Fla+13] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell,
Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan.
“Reducing web latency: the virtue of gentle aggression”. In: Pro-
ceedings of the ACM SIGCOMM 2013 conference on SIGCOMM.
2013, pp. 159–170.

[Fle17a] M. Fleming. “A thorough introduction to eBPF”. In: (2017).
https://lwn.net/Articles/740157/.

[Fle17b] M. Fleming. “A thorough introduction to eBPF”. In: Linux
Weekly News (Dec. 2017). https://old.lwn.net/Articles/740157/.

https://lwn.net/Articles/740157/


BIBLIOGRAPHY 145

[FLW06] C. Fragouli, J.-Y. Le Boudec, and J. Widmer. “Network coding:
an instant primer”. In: ACM SIGCOMM Computer Communi-
cation Review 36.1 (2006), pp. 63–68.

[For16] ". Forum". "TR-348 Hybrid Access Broadband Network Architec-
ture". Aug. 2016.

[Fuk11] K. Fukuda. “An analysis of longitudinal TCP passive measure-
ments (short paper)”. In: Traffic Monitoring and Analysis: Third
International Workshop, TMA 2011, Vienna, Austria, April 27,
2011. Proceedings 3. Springer. 2011, pp. 29–36.

[Gar+19] P. Garrido, I. Sanchez, S. Ferlin, R. Aguero, and O. Alay. “rQUIC:
Integrating FEC with QUIC for robust wireless communi-
cations”. In: 2019 IEEE Global Communications Conference
(GLOBECOM). IEEE. 2019, pp. 1–7.

[Geo] A. B. Geoff Houston. A look at QUIC use. https://stats.l
abs.apnic.net/quic. Accessed: 2022-02-09.

[Geo+10] N. Geoffray, G. Thomas, J. Lawall, G. Muller, and B. Folliot.
“VMKit: a substrate for managed runtime environments”. In:
ACM Sigplan Notices 45.7 (2010), pp. 51–62.

[Gie+18] H. Giesen et al. “In-network computing to the rescue of faulty
links”. In: NetCompute 2018. ACM. 2018, pp. 1–6.

[Gre15] B. Gregg. “eBPF: One Small Step”. http://www.brendang
regg.com/blog/2015-05-15/ebpf-one-small-ste
p.html. May 2015.

[GStrDoc] G. Documentation. GStreamer rtpjitterbuffer. https://gstr
eamer.freedesktop.org/documentation/rtpmanag
er/rtpjitterbuffer.html. Accessed: 2023-04-27.

[Haa+17] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien. “Bringing
the web up to speed with WebAssembly”. In: ACM SIGPLAN
Notices 52.6 (2017), pp. 185–200.

[Han+12] N. Handigol et al. “Reproducible network experiments using
container-based emulation”. In: CoNEXT. ACM. 2012, pp. 253–
264.

[Hes+13] B. Hesmans, F. Duchene, C. Paasch, G. Detal, and O. Bonaven-
ture. “Are TCP extensions middlebox-proof?” In: Proceedings
of the 2013 workshop on Hot topics in middleboxes and network
function virtualization. ACM. 2013, pp. 37–42.

https://stats.labs.apnic.net/quic
https://stats.labs.apnic.net/quic
http://www.brendangregg.com/blog/2015-05-15/ebpf-one-small-step.html
http://www.brendangregg.com/blog/2015-05-15/ebpf-one-small-step.html
http://www.brendangregg.com/blog/2015-05-15/ebpf-one-small-step.html
https://gstreamer.freedesktop.org/documentation/rtpmanager/rtpjitterbuffer.html
https://gstreamer.freedesktop.org/documentation/rtpmanager/rtpjitterbuffer.html
https://gstreamer.freedesktop.org/documentation/rtpmanager/rtpjitterbuffer.html


146 BIBLIOGRAPHY

[HH08] G. Haßlinger and O. Hohlfeld. “The Gilbert-Elliott model for
packet loss in real time services on the Internet”. In: 14th
GI/ITG Conference-Measurement, Modelling and Evalutation of
Computer and Communication Systems. VDE. 2008, pp. 1–15.

[Ho+03] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros. “The
benefits of coding over routing in a randomized setting”. In:
(2003).

[Hon+11] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,
and H. Tokuda. “Is it still possible to extend TCP?” In: Pro-
ceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference. 2011, pp. 181–194.

[Hon+14] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo. “Rekin-
dling network protocol innovation with user-level stacks”. In:
ACM SIGCOMM Computer Communication Review 44.2 (2014),
pp. 52–58.

[Hor+18] D. N. da Hora, A. S. Asrese, V. Christophides, R. Teixeira, and D.
Rossi. “Narrowing the gap between QoS metrics and Web QoE
using Above-the-fold metrics”. In: International Conference
on Passive and Active Network Measurement. Springer. 2018,
pp. 31–43.

[Hou+08] I.-H. Hou, Y.-E. Tsai, T. F. Abdelzaher, and I. Gupta. “Adapcode:
Adaptive network coding for code updates in wireless sensor
networks”. In: IEEE INFOCOM 2008. IEEE. 2008, pp. 1517–1525.

[HPF22] J. Holland, L. Pardue, and M. Franke. Multicast Extension for
QUIC. Internet-Draft draft-jholland-quic-multicast-02. Work
in Progress. Internet Engineering Task Force, July 2022. 38 pp.

[HRX08] S. Ha, I. Rhee, and L. Xu. “CUBIC: a new TCP-friendly high-
speed TCP variant”. In: ACM SIGOPS operating systems review
42.5 (2008), pp. 64–74.

[Hua+13] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen,
and O. Spatscheck. “An in-depth study of LTE: Effect of net-
work protocol and application behavior on performance”. In:
ACM SIGCOMM Computer Communication Review 43.4 (2013),
pp. 363–374.

[Hui+21] C. Huitema et al. Minimal implementation of the QUIC pro-
tocol. https://github.com/private-octopus/pic
oquic/blob/master/picoquic/quicctx.c. commit:
7f49f62ff7f3938eb1a0f49dfc551d7ed189454c. 2021.

https://github.com/private-octopus/picoquic/blob/master/picoquic/quicctx.c
https://github.com/private-octopus/picoquic/blob/master/picoquic/quicctx.c


BIBLIOGRAPHY 147

[Hui22a] C. Huitema. “picoquic”. https://github.com/private-
octopus/picoquic. 2022.

[Hui22b] C. Huitema. Quic Timestamps For Measuring One-Way Delays.
Internet-Draft draft-huitema-quic-ts-08. Work in Progress. In-
ternet Engineering Task Force, Aug. 2022. 11 pp.

[Hui97] C. Huitema. “The case for packet level FEC”. In: Protocols for
High-Speed Networks V: TC6 WG6. 1/6.4 Fifth International
Workshop on Protocols for High-Speed Networks (PfHSN’96)
28–30 October 1996, Sophia Antipolis, France. Springer. 1997,
pp. 109–120.

[IO 18] IO Visor Project. “Userspace eBPF VM”. https://github
.com/iovisor/ubpf. 2018.

[IS18] J. Iyengar and I. Swett. “QUIC: Developing and Deploying a
TCP Replacement for the Web”. In: Netdev 0x12. 2018.

[ISO22] ISO Central Secretary. Information technology – Dynamic adap-
tive streaming over HTTP (DASH) – Part 1: Media presentation
description and segment formats. Standard ISO/IEC TR 23009-
1:2022. International Organization for Standardization, 2022.

[IT16] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. Internet-Draft draft-ietf-quic-transport-
00. Work in Progress. Internet Engineering Task Force, Nov.
2016. 45 pp.

[ITU03] ITU-T. Recommendation G.114: One-way transmission time.
Tech. rep. 2003.

[Jac88] V. Jacobson. “Congestion avoidance and control”. In: ACM SIG-
COMM computer communication review 18.4 (1988), pp. 314–
329.

[Jae+23] B. Jaeger, J. Zirngibl, M. Kempf, K. Ploch, and G. Carle. “QUIC
on the Highway: Evaluating Performance on High-rate Links”.
In: International Federation for Information Processing (IFIP)
Networking 2023 Conference (IFIP Networking 2023). 2023.

[Jai86] R. Jain. “A timeout-based congestion control scheme for win-
dow flow-controlled networks”. In: IEEE Journal on Selected
Areas in Communications 4.7 (1986), pp. 1162–1167.

[JR88] R. Jain and K. Ramakrishnan. “Congestion avoidance in com-
puter networks with a connectionless network layer: concepts,
goals and methodology”. In: [1988] Proceedings. Computer Net-
working Symposium. IEEE. 1988, pp. 134–143.

https://github.com/private-octopus/picoquic
https://github.com/private-octopus/picoquic
https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf


148 BIBLIOGRAPHY

[Kas+20] S. Kassing, D. Bhattacherjee, A. B. Águas, J. E. Saethre, and
A. Singla. “Exploring the" Internet from space" with Hypatia”.
In: Proceedings of the ACM Internet Measurement Conference.
2020, pp. 214–229.

[Kas+22] M. M. Kassem, A. Raman, D. Perino, and N. Sastry. “A browser-
side view of starlink connectivity”. In: Proceedings of the 22nd
ACM Internet Measurement Conference. 2022, pp. 151–158.

[Kat+08] S. Katti et al. “XORs in the air: practical wireless network
coding”. In: IEEE/ACM ToN 16.3 (2008), pp. 497–510.

[KD19] P. Kumar and B. Dezfouli. “Implementation and analysis of
QUIC for MQTT”. In: Computer Networks 150 (2019), pp. 28–
45.

[Ken+16] J. Keniston et al. Kernel probes (kprobes). Documentation pro-
vided with the Linux kernel sources (v2. 6.29). 2016.

[Ken12] B. Kenwright. “Fast Efficient Fixed-Size Memory Pool: No
Loops and No Overhead”. In: The Third International Confer-
ence on Computational Logics, Algebras, Programming, Tools,
and Benchmarking. 2012.

[Kha+17] A. S. Khatouni, M. Mellia, M. A. Marsan, S. Alfredsson, J.
Karlsson, A. Brunstrom, O. Alay, A. Lutu, C. Midoglu, and
V. Mancuso. “Speedtest-like measurements in 3g/4g networks:
The monroe experience”. In: 2017 29th International Teletraffic
Congress (ITC 29). Vol. 1. IEEE. 2017, pp. 169–177.

[KHB20] N. Keukeleire, B. Hesmans, and O. Bonaventure. “Increasing
broadband reach with hybrid access networks”. In: IEEE Com-
munications Standards Magazine 4.1 (2020), pp. 43–49.

[Khl+15] H. Khlaaf, M. Brockschmidt, S. Falke, D. Kapur, and C. Sinz.
llvm2KITTeL tailored for T2. Source code. https://github
.com/hkhlaaf/llvm2kittel. 2015.

[Kim+12] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D.
Leith, and M. Médard. “Network coded TCP (CTCP)”. In: arXiv
preprint arXiv:1212.2291 (2012).

[Kim+14] M. Kim et al. “Congestion control for coded transport layers”.
In: Communications (ICC), 2014 IEEE International Conference
on. IEEE. 2014, pp. 1228–1234.

https://github.com/hkhlaaf/llvm2kittel
https://github.com/hkhlaaf/llvm2kittel


BIBLIOGRAPHY 149

[Kod+20] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar,
J. F. M. Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas,
S. Kisseleff, et al. “Satellite communications in the new space
era: A survey and future challenges”. In: IEEE Communications
Surveys & Tutorials 23.1 (2020), pp. 70–109.

[Kos+22] M. Kosek, T. V. Doan, M. Granderath, and V. Bajpai. “One to
Rule Them All? A First Look at DNS over QUIC”. In: Passive
and Active Measurement: 23rd International Conference, PAM
2022, Virtual Event, March 28–30, 2022, Proceedings. Springer.
2022, pp. 537–551.

[Kuh+18] N. Kuhn et al. Network coding and satellites. Working Draft.
Internet-Draft. draft-irtf-nwcrg-network-coding-satellites-02.
Nov. 2018.

[Kuh+20] N. Kuhn, G. Fairhurst, J. Border, and S. Emile. QUIC for SAT-
COM. Internet-Draft draft-kuhn-quic-4-sat-03. http://www
.ietf.org/internet-drafts/draft-kuhn-quic-4-
sat-03.txt. IETF Secretariat, Jan. 2020.

[Lab] A. Labs. HTTP/3 Use by country. https://stats.labs.ap
nic.net/quic. Accessed: 2023-04-07.

[Lan+17] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D.
Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, et al. “The
QUIC transport protocol: Design and internet-scale deploy-
ment”. In: Proceedings of the conference of the ACM special
interest group on data communication. 2017, pp. 183–196.

[Law+23] W. Law, L. Curley, V. Vasiliev, S. Nandakumar, and K. Pu-
gin. WARP Streaming Format. Internet-Draft draft-law-moq-
warpstreamingformat-00. Work in Progress. Internet Engineer-
ing Task Force, June 2023. 8 pp.

[LCB10] D. Lee, B. E. Carpenter, and N. Brownlee. “Observations of UDP
to TCP ratio and port numbers”. In: 2010 Fifth International
Conference on Internet Monitoring and Protection. IEEE. 2010,
pp. 99–104.

[Li+15] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. “IccTA:
Detecting inter-component privacy leaks in Android apps”. In:
Proceedings of the 37th International Conference on Software
Engineering. IEEE Press. 2015, pp. 280–291.

http://www.ietf.org/internet-drafts/draft-kuhn-quic-4-sat-03.txt
http://www.ietf.org/internet-drafts/draft-kuhn-quic-4-sat-03.txt
http://www.ietf.org/internet-drafts/draft-kuhn-quic-4-sat-03.txt
https://stats.labs.apnic.net/quic
https://stats.labs.apnic.net/quic


150 BIBLIOGRAPHY

[Li+19] F. Li, A. A. Niaki, D. Choffnes, P. Gill, and A. Mislove. “A large-
scale analysis of deployed traffic differentiation practices”. In:
Proceedings of the ACM Special Interest Group on Data Commu-
nication. 2019, pp. 130–144.

[Lin+14] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java
virtual machine specification. Pearson Education, 2014.

[LinBBR] Linux source code git repository. https://git.kernel.org.
commit: 0f8782ea14974ce992618b55f0c041ef43ed0b78.

[LinCub] Linux source code git repository. https://git.kernel.org.
commit: 597811ec167fa01926a0957a91d9e39baa30e64.

[Liu+23] Y. Liu, Y. Ma, Q. D. Coninck, O. Bonaventure, C. Huitema,
and M. Kühlewind. Multipath Extension for QUIC. Internet-
Draft draft-ietf-quic-multipath-04. Work in Progress. Internet
Engineering Task Force, Mar. 2023. 30 pp.

[LK04] H. Lundqvist and G. Karlsson. “TCP with end-to-end FEC”. In:
International Zurich Seminar on Communications, 2004. IEEE.
2004, pp. 152–155.

[LLV23] LLVM Team. “Clang: a C language family frontend for LLVM”.
https://clang.llvm.org/. 2023.

[Lub02] M. Luby. “LT codes”. In: The 43rd Annual IEEE Symposium
on Foundations of Computer Science, 2002. Proceedings. IEEE
Computer Society. 2002, pp. 271–271.

[M K+22] M. M. Kassem, A. Raman, D. Perino, and N. Sastry. “A Browser-
side View of Starlink Connectivity”. In: Proceedings of the 2022
Internet Measurement Conference. 2022. doi: 10.1145/3517
745.3561457.

[Ma+22] S. Ma, Y. C. Chou, H. Zhao, L. Chen, X. Ma, and J. Liu. “Network
Characteristics of LEO Satellite Constellations: A Starlink-
Based Measurement from End Users”. In: arXiv preprint arXiv
: 2212.13697 (2022).

[Mac+] K. MacMillan, T. Mangla, J. Saxon, N. P. Marwell, and N. Feam-
ster. “A Comparative Analysis of Ookla Speedtest and Mea-
surement Labs Network Diagnostic Test (NDT7)”. In: ().

[Mas+01] S. Mascolo et al. “TCP westwood: Bandwidth estimation for
enhanced transport over wireless links”. In: MobiCom. ACM.
2001, pp. 287–297.

[MB21a] F. Michel and O. Bonaventure. “Packet delivery time as a tie-
breaker for assessing Wi-Fi access points”. In: IAB Workshop
on Measuring Network Quality for End-Users (2021).

https://git.kernel.org
https://git.kernel.org
https://doi.org/10.1145/3517745.3561457
https://doi.org/10.1145/3517745.3561457


BIBLIOGRAPHY 151

[MB22] F. Michel and O. Bonaventure. Forward Erasure Correction for
QUIC loss recovery. Internet-Draft draft-michel-quic-fec-00.
Work in Progress. Internet Engineering Task Force, Oct. 2022.
14 pp.

[MDB18] F. Michel, Q. De Coninck, and O. Bonaventure. “Adding For-
ward Erasure Correction to QUIC”. In: arXiv preprint arXiv :
1809.04822 (2018).

[Mic+23b] F. Michel, M. Trevisan, D. Giordano, and O. Bonaventure. “A
first look at Starlink performance: open data”. https://sma
rtdata.polito.it/a-first-look-at-starlink-p
erformance-open-data/. 2023.

[Mic23a] F. Michel. “ebpf_dropper”. https://github.com/franco
ismichel/ebpf_dropper. 2023.

[Mic23b] F. Michel. “FlEC”. https://github.com/francoismich
el/flec. 2023.

[Mic23c] F. Michel. “FlEC simulations experiments”. https://githu
b.com/francoismichel/flec-simulation-experim
ents. 2023.

[Mic23d] F. Michel. “QUIC-FEC on Bitbucket”. https://bitbucket
.org/michelfra/quic-fec. 2023.

[Mic23e] F. Michel. “QUIRL”. https://github.com/francoismi
chel/quirl. 2023.

[Mil] L. Milne-Thompson. The calculus of finite differences 1951, 171.
Macmillan, London, p. 9.

[Mor12] P. Morandi. Field and Galois theory. Vol. 167. Springer Science
& Business Media, 2012.

[Nec02] G. C. Necula. “Proof-carrying code. Design and implementa-
tion”. In: Proof and system-reliability. Springer, 2002, pp. 261–
288.

[NMB22] L. Navarre, F. Michel, and O. Bonaventure. “It Is Time to Re-
consider Multicast”. In: IAB workshop on Environmental Impact
of Internet Applications and Systems, 2022. 2022.

[NTM08] A. Nafaa, T. Taleb, and L. Murphy. “Forward error correction
strategies for media streaming over wireless networks”. In:
IEEE Communications Magazine 46.1 (2008), pp. 72–79.

[OE23] J. Ott and M. Engelbart. RTP over QUIC. Internet-Draft draft-
ietf-avtcore-rtp-over-quic-02. Work in Progress. Internet En-
gineering Task Force, Feb. 2023. 27 pp.

https://smartdata.polito.it/a-first-look-at-starlink-performance-open-data/
https://smartdata.polito.it/a-first-look-at-starlink-performance-open-data/
https://smartdata.polito.it/a-first-look-at-starlink-performance-open-data/
https://github.com/francoismichel/ebpf_dropper
https://github.com/francoismichel/ebpf_dropper
https://github.com/francoismichel/flec
https://github.com/francoismichel/flec
https://github.com/francoismichel/flec-simulation-experiments
https://github.com/francoismichel/flec-simulation-experiments
https://github.com/francoismichel/flec-simulation-experiments
https://bitbucket.org/michelfra/quic-fec
https://bitbucket.org/michelfra/quic-fec
https://github.com/francoismichel/quirl
https://github.com/francoismichel/quirl


152 BIBLIOGRAPHY

[Paa16] C. Paasch. “Network support for tcp fast open”. In: Presentation
at NANOG 67 (2016).

[PAJ18] S. Pailoor, A. Aday, and S. Jana. “MoonShine: Optimizing OS
Fuzzer Seed Selection with Trace Distillation”. In: 27th USENIX
Security Symposium (USENIX Security 18). 2018, pp. 729–743.

[Pau+23] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, and C.
Perkins. An Architecture for Transport Services. Internet-Draft
draft-ietf-taps-arch-18. Work in Progress. Internet Engineering
Task Force, May 2023. 33 pp.

[PDB18] M. Piraux, Q. De Coninck, and O. Bonaventure. “Observing
the evolution of QUIC implementations”. In: Proceedings of the
Workshop on the Evolution, Performance, and Interoperability
of QUIC. 2018, pp. 8–14.

[Per+22] D. Perdices, G. Perna, M. Trevisan, D. Giordano, and M. Mellia.
“When Satellite is All You Have When Satellite is All You Have:
Watching the Internet from 550 ms”. In: Proceedings of the 2022
Internet Measurement Conference. 2022. doi: 10.1145/3517
745.3561432.

[PO18] C. Perkins and J. Ott. “Real-time audio-visual media transport
over QUIC”. In: Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC. 2018, pp. 36–42.

[PquicRepo] Pluginized QUIC. https://github.com/p-quic/pquic.
commit: 68e61c5496d8d3ef9b39e7bd5d60a14b9789e977.

[PR04] A. Podelski and A. Rybalchenko. “Transition invariants”. In:
Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science, 2004. IEEE. 2004, pp. 32–41.

[PR05] A. Podelski and A. Rybalchenko. “Transition predicate ab-
straction and fair termination”. In: ACM SIGPLAN Notices 40.1
(2005), pp. 132–144.

[Pro+19] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bharga-
van. “Formally verified cryptographic web applications in we-
bassembly”. In: 2019 IEEE Symposium on Security and Privacy
(SP). IEEE. 2019, pp. 1256–1274.

[Pur+01] R. Puri, K. Ramchandran, K.-W. Lee, and V. Bharghavan. “For-
ward error correction (FEC) codes based multiple description
coding for Internet video streaming and multicast”. In: Signal
Processing: Image Communication 16.8 (2001), pp. 745–762.

https://doi.org/10.1145/3517745.3561432
https://doi.org/10.1145/3517745.3561432
https://github.com/p-quic/pquic


BIBLIOGRAPHY 153

[QUICBlog] Experimenting with QUIC. https://blog.chromium.org
/2013/06/experimenting-with-quic.html. accessed:
2022-02-09.

[QUICDNS] DNS-over-HTTP/3 in Android. https://security.googl
eblog.com/2022/07/dns-over-http3-in-android
.html. accessed: 2022-02-09.

[Rai+12] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duch-
ene, O. Bonaventure, and M. Handley. “How hard can it be?
designing and implementing a deployable multipath TCP”.
In: 9th USENIX symposium on networked systems design and
implementation (NSDI 12). 2012, pp. 399–412.

[Raj+19] M. Rajiullah, A. Lutu, A. S. Khatouni, M.-R. Fida, M. Mellia,
A. Brunstrom, O. Alay, S. Alfredsson, and V. Mancuso. “Web
experience in mobile networks: Lessons from two million page
visits”. In: The world wide web conference. 2019, pp. 1532–1543.

[Rao+23] X. Rao, A. L. Georges, M. Legoupil, C. Watt, J. Pichon-Pharabod,
P. Gardner, and L. Birkedal. “Iris-Wasm: Robust and Modular
Verification of WebAssembly Programs”. In: Proceedings of the
44th ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI 2023). Association
for Computing Machinery. 2023.

[Rap+13] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang,
G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez. “Mil-
limeter wave mobile communications for 5G cellular: It will
work!” In: IEEE access 1 (2013), pp. 335–349.

[RBC16] J. P. Rula, F. E. Bustamante, and D. R. Choffnes. “When IPs Fly:
A Case for Redefining Airline Communication”. In: Proceed-
ings of the 17th International Workshop on Mobile Computing
Systems and Applications. ACM. 2016, pp. 9–14.

[RFB01] K. Ramakrishnan, S. Floyd, and D. Black. RFC3168: The addition
of explicit congestion notification (ECN) to IP. Tech. rep. 2001.

[RFC1323] D. A. Borman, R. T. Braden, and V. Jacobson. TCP Extensions
for High Performance. RFC 1323. May 1992. doi: 10.17487
/RFC1323.

[RFC2018] S. Floyd, J. Mahdavi, M. Mathis, and D. A. Romanow. TCP
Selective Acknowledgment Options. RFC 2018. Oct. 1996. doi:
10.17487/RFC2018.

https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://security.googleblog.com/2022/07/dns-over-http3-in-android.html
https://security.googleblog.com/2022/07/dns-over-http3-in-android.html
https://security.googleblog.com/2022/07/dns-over-http3-in-android.html
https://doi.org/10.17487/RFC1323
https://doi.org/10.17487/RFC1323
https://doi.org/10.17487/RFC2018


154 BIBLIOGRAPHY

[RFC2883] M. Podolsky, S. Floyd, J. Mahdavi, and M. Mathis. An Extension
to the Selective Acknowledgement (SACK) Option for TCP. RFC
2883. July 2000. doi: 10.17487/RFC2883.

[RFC3135] J. Griner, J. Border, M. Kojo, Z. D. Shelby, and G. Montene-
gro. Performance Enhancing Proxies Intended to Mitigate Link-
Related Degradations. RFC 3135. June 2001. doi: 10.17487
/RFC3135.

[RFC3168] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black. The Addition
of Explicit Congestion Notification (ECN) to IP. RFC 3168. Sept.
2001. doi: 10.17487/RFC3168.

[RFC3708] E. Blanton and M. Allman. Using TCP Duplicate Selective Ac-
knowledgement (DSACKs) and Stream Control Transmission Pro-
tocol (SCTP) Duplicate Transmission Sequence Numbers (TSNs)
to Detect Spurious Retransmissions. RFC3708. Feb. 2004. doi:
10.17487/RFC3708.

[RFC4960] R. R. Stewart. Stream Control Transmission Protocol. RFC 4960.
Sept. 2007. doi: 10.17487/RFC4960.

[RFC5681] E. Blanton, D. V. Paxson, and M. Allman. TCP Congestion Con-
trol. RFC 5681. Sept. 2009. doi: 10.17487/RFC5681.

[RFC6184] R. Jesup, T. Kristensen, Y. Wang, and R. Even. RTP Payload
Format for H.264 Video. RFC 6184. May 2011. doi: 10.17487
/RFC6184.

[RFC6363] V. Roca, M. Watson, and A. C. Begen. Forward Error Correction
(FEC) Framework. RFC 6363. Oct. 2011.

[RFC6582] A. Gurtov, T. Henderson, S. Floyd, and Y. Nishida. The NewReno
Modification to TCP’s Fast Recovery Algorithm. RFC 6582. Apr.
2012. doi: 10.17487/RFC6582.

[RFC6675] E. Blanton, M. Allman, L. Wang, I. Järvinen, M. Kojo, and
Y. Nishida. A Conservative Loss Recovery Algorithm Based on
Selective Acknowledgment (SACK) for TCP. RFC 6675. Aug. 2012.
doi: 10.17487/RFC6675.

[RFC6816] V. Roca, M. Cunche, and J. Lacan. Simple Low-Density Parity
Check (LDPC) Staircase Forward Error Correction (FEC) Scheme
for FECFRAME. RFC 6816. Dec. 2012. doi: 10.17487/RFC68
16.

[RFC6865] V. Roca, M. Cunche, J. Lacan, A. Bouabdallah, and K. Mat-
suzono. Simple Reed-Solomon Forward Error Correction (FEC)
Scheme for FECFRAME. RFC 6865. Feb. 2013. doi: 10.17487
/RFC6865.

https://doi.org/10.17487/RFC2883
https://doi.org/10.17487/RFC3135
https://doi.org/10.17487/RFC3135
https://doi.org/10.17487/RFC3168
https://doi.org/10.17487/RFC3708
https://doi.org/10.17487/RFC4960
https://doi.org/10.17487/RFC5681
https://doi.org/10.17487/RFC6184
https://doi.org/10.17487/RFC6184
https://doi.org/10.17487/RFC6582
https://doi.org/10.17487/RFC6675
https://doi.org/10.17487/RFC6816
https://doi.org/10.17487/RFC6816
https://doi.org/10.17487/RFC6865
https://doi.org/10.17487/RFC6865


BIBLIOGRAPHY 155

[RFC7323] D. Borman, R. T. Braden, V. Jacobson, and R. Scheffenegger.
TCP Extensions for High Performance. RFC 7323. Sept. 2014.
doi: 10.17487/RFC7323.

[RFC7413] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP Fast Open.
RFC 7413. Dec. 2014. doi: 10.17487/RFC7413.

[RFC7414] M. Duke, R. T. Braden, W. Eddy, E. Blanton, and A. Zimmer-
mann. A Roadmap for Transmission Control Protocol (TCP)
Specification Documents. RFC 7414. Feb. 2015. doi: 10.17
487/RFC7414.

[RFC768] User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.17487
/RFC0768.

[RFC791] Internet Protocol. RFC 791. Sept. 1981. doi: 10.17487/RFC07
91.

[RFC8200] D. S. E. Deering and B. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 8200. July 2017. doi: 10.17487/RFC8200.

[RFC8290] T. Høiland-Jørgensen, P. McKenney, D. Taht, J. Gettys, and
E. Dumazet. The Flow Queue CoDel Packet Scheduler and Active
Queue Management Algorithm. RFC 8290. Jan. 2018. doi: 10
.17487/RFC8290.

[RFC8298] I. Johansson and Z. Sarker. Self-Clocked Rate Adaptation for
Multimedia. RFC 8298. Dec. 2017. doi: 10.17487/RFC8298.

[RFC8312bis] L. Xu, S. Ha, I. Rhee, V. Goel, and L. Eggert. CUBIC for Fast
and Long-Distance Networks. Internet-Draft draft-ietf-tcpm-
rfc8312bis-15. Work in Progress. Internet Engineering Task
Force, Jan. 2023. 41 pp.

[RFC8446] E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. Aug. 2018. doi: 10.17487/RFC8446.

[RFC8681] V. Roca and B. Teibi. SlidingWindow Random Linear Code (RLC)
Forward Erasure Correction (FEC) Schemes for FECFRAME. RFC
8681. Jan. 2020. doi: 10.17487/RFC8681.

[RFC8684] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and C.
Paasch. TCP Extensions for Multipath Operation with Multiple
Addresses. RFC 8684. Mar. 2020. doi: 10.17487/RFC8684.

[RFC8825] H. T. Alvestrand. Overview: Real-Time Protocols for Browser-
Based Applications. RFC 8825. Jan. 2021. doi: 10.17487/RFC8
825.

https://doi.org/10.17487/RFC7323
https://doi.org/10.17487/RFC7413
https://doi.org/10.17487/RFC7414
https://doi.org/10.17487/RFC7414
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC8200
https://doi.org/10.17487/RFC8290
https://doi.org/10.17487/RFC8290
https://doi.org/10.17487/RFC8298
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8681
https://doi.org/10.17487/RFC8684
https://doi.org/10.17487/RFC8825
https://doi.org/10.17487/RFC8825


156 BIBLIOGRAPHY

[RFC8985] Y. Cheng, N. Cardwell, N. Dukkipati, and P. Jha. The RACK-TLP
Loss Detection Algorithm for TCP. RFC 8985. Feb. 2021. doi:
10.17487/RFC8985.

[RFC9000] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. RFC 9000. May 2021. doi: 10.17487
/RFC9000.

[RFC9001] M. Thomson and S. Turner. Using TLS to Secure QUIC. RFC
9001. May 2021. doi: 10.17487/RFC9001.

[RFC9002] J. Iyengar and I. Swett. QUIC Loss Detection and Congestion
Control. RFC 9002. May 2021. doi: 10.17487/RFC9002.

[RFC9113] M. Thomson and C. Benfield. HTTP/2. RFC 9113. June 2022.
doi: 10.17487/RFC9113.

[RFC9114] M. Bishop. HTTP/3. RFC 9114. June 2022. doi: 10.17487
/RFC9114.

[RFC9220] R. Hamilton. Bootstrapping WebSockets with HTTP/3. RFC 9220.
June 2022. doi: 10.17487/RFC9220.

[RFC9221] T. Pauly, E. Kinnear, and D. Schinazi. An Unreliable Datagram
Extension to QUIC. RFC 9221. Mar. 2022. doi: 10.17487/RFC9
221.

[RFC9250] C. Huitema, S. Dickinson, and A. Mankin. DNS over Dedicated
QUIC Connections. RFC 9250. May 2022. doi: 10.17487/RFC9
250.

[RH10] G. F. Riley and T. R. Henderson. “The ns-3 network simulator”.
In: Modeling and tools for network simulation. Springer, 2010,
pp. 15–34.

[Roc+17] V. Roca et al. “Less latency and better protection with AL-FEC
sliding window codes: A robust multimedia CBR broadcast
case study”. In: WiMob. IEEE. 2017, pp. 1–8.

[Ros12] J. Rosking. QUIC: Design Document and Specification Rationale.
https://docs.google.com/document/d/1RNHkx_V
vKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34. accessed:
2022-02-09. 2012.

[RS60] I. S. Reed and G. Solomon. “Polynomial codes over certain
finite fields”. In: Journal of the society for industrial and applied
mathematics 8.2 (1960), pp. 300–304.

[Rul+18] Rula et al. “Mile High WiFi: A First Look at In-Flight Internet
Connectivity”. In: 2018 World Wide Web Conference on World
Wide Web. 2018.

https://doi.org/10.17487/RFC8985
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9001
https://doi.org/10.17487/RFC9002
https://doi.org/10.17487/RFC9113
https://doi.org/10.17487/RFC9114
https://doi.org/10.17487/RFC9114
https://doi.org/10.17487/RFC9220
https://doi.org/10.17487/RFC9221
https://doi.org/10.17487/RFC9221
https://doi.org/10.17487/RFC9250
https://doi.org/10.17487/RFC9250
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34


BIBLIOGRAPHY 157

[Rüt+18] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld. “A First Look at
QUIC in the Wild”. In: Passive and Active Measurement: 19th
International Conference, PAM 2018, Berlin, Germany, March
26–27, 2018, Proceedings 19. Springer. 2018, pp. 255–268.

[RX05] I. Rhee and L. Xu. “CUBIC: a new TCP-friendly high-speed
TCP variant”. In: Proceedings of the third PFLDNet Workshop
(2005).

[Ryb+21] N. Rybowski, Q. De Coninck, T. Rousseaux, A. Legay, and O.
Bonaventure. “Implementing the plugin distribution system”.
In: Proceedings of the SIGCOMM’21 Poster and Demo Sessions.
2021, pp. 39–41.

[Sch+13] P. S. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann. “Socket
intents: Leveraging application awareness for multi-access
connectivity”. In: Proceedings of the ninth ACM conference
on Emerging networking experiments and technologies. 2013,
pp. 295–300.

[Sch23] D. Schinazi. The MASQUE Proxy. Internet-Draft draft-schinazi-
masque-proxy-00. Work in Progress. Internet Engineering
Task Force, Mar. 2023. 7 pp.

[SCS12] J. Santiago, M. Claeys-Bruno, and M. Sergent. “Construction
of space-filling designs using WSP algorithm for high dimen-
sional spaces”. In: Chemometrics and Intelligent Laboratory
Systems 113 (2012), pp. 26–31.

[Sho06] A. Shokrollahi. “Raptor codes”. In: IEEE transactions on infor-
mation theory 52.6 (2006), pp. 2551–2567.

[SMR19] I. Swett, M.-J. Montpetit, and V. Roca.Coding for QUIC. Internet-
Draft draft-swett-nwcrg-coding-for-quic-02. Work in Progress.
Internet Engineering Task Force, Feb. 2019. 15 pp.

[SOCKET] socket(2) Linux User’s Manual. https://man7.org/linux
/man-pages/man2/socket.2.html.

[Sun+11] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, and J. Barros. “Network coding meets TCP: Theory
and implementation”. In: Proceedings of the IEEE 99.3 (2011),
pp. 490–512.

[SV96] M. Shreedhar and G. Varghese. “Efficient fair queuing using
deficit round-robin”. In: IEEE/ACM Transactions on networking
4.3 (1996), pp. 375–385.

https://man7.org/linux/man-pages/man2/socket.2.html
https://man7.org/linux/man-pages/man2/socket.2.html


158 BIBLIOGRAPHY

[Swa+16] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss,
et al. “Dependent types and multi-monadic effects in F”. In:
Proceedings of the 43rd annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. 2016, pp. 256–
270.

[Swe+20a] I. Swett, M.-J. Montpetit, V. Roca, and F. Michel. Coding for
QUIC. Internet-Draft draft-swett-nwcrg-coding-for-quic-03.
Work in Progress. Internet Engineering Task Force, Jan. 2020.
16 pp.

[Swe+20b] I. Swett, M.-J. Montpetit, V. Roca, and F. Michel. Coding for
QUIC. Internet-Draft draft-swett-nwcrg-coding-for-quic-04.
Work in Progress. Internet Engineering Task Force, Mar. 2020.
17 pp.

[Swe17] I. Swett. QUIC-FEC. https://datatracker.ietf.org/m
eeting/99/materials/slides-99-nwcrg-08-swet
t-quic-fec-00. Accessed: 2018-06-02. 2017.

[TE22] D. J. D. Touch and W. Eddy. TCP Extended Data Offset Option.
Internet-Draft draft-ietf-tcpm-tcp-edo-13. Work in Progress.
Internet Engineering Task Force, Oct. 2022. 23 pp.

[Tho+19] L. Thomas, E. Dubois, N. Kuhn, and E. Lochin. “Google QUIC
performance over a public SATCOM access”. In: International
Journal of Satellite Communications and Networking 37.6 (2019),
pp. 601–611.

[Tic+05] O. Tickoo, V. Subramanian, S. Kalyanaraman, and K. Ramakr-
ishnan. “LT-TCP: End-to-end framework to improve TCP per-
formance over networks with lossy channels”. In: IWQoS.
Springer. 2005, pp. 81–93.

[TKG20] M. Trevisan, A. S. Khatouni, and D. Giordano. “ERRANT: Re-
alistic emulation of radio access networks”. In: Computer Net-
works 176 (2020), p. 107289.

[TMW97] K. Thompson, G. J. Miller, and R. Wilder. “Wide-area Inter-
net traffic patterns and characteristics”. In: IEEE network 11.6
(1997), pp. 10–23.

[Tou+11] P. U. Tournoux, E. Lochin, J. Lacan, A. Bouabdallah, and V. Roca.
“On-the-fly erasure coding for real-time video applications”.
In: IEEE Transactions on Multimedia 13.4 (2011), pp. 797–812.

https://datatracker.ietf.org/meeting/99/materials/slides-99-nwcrg-08-swett-quic-fec-00
https://datatracker.ietf.org/meeting/99/materials/slides-99-nwcrg-08-swett-quic-fec-00
https://datatracker.ietf.org/meeting/99/materials/slides-99-nwcrg-08-swett-quic-fec-00


BIBLIOGRAPHY 159

[Tou22] D. J. D. Touch. Transport Options for UDP. Internet-Draft draft-
ietf-tsvwg-udp-options-19. Work in Progress. Internet Engi-
neering Task Force, Dec. 2022. 43 pp.

[Tre+18] M. Trevisan, D. Giordano, I. Drago, M. Mellia, and M. Mu-
nafo. “Five years at the edge: Watching internet from the ISP
network”. In: Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies. 2018,
pp. 1–12.

[Twi22a] @ElonMusk, Twitter, on the launch of ISL-enabled satellites. 2022.
url: https://twitter.com/elonmusk/status/1436
541063406264320 (visited on 05/13/2022).

[Twi22b] @ElonMusk, Twitter, on ISL activation. 2022. url: https://t
witter.com/elonmusk/status/15353943593734430
73 (visited on 05/13/2022).

[VJA23] V. Vasiliev, N. Jaju, and B. Aboba. WebTransport. W3C Work-
ing Draft. https://www.w3.org/TR/2023/WD-webtransport-
20230405/. W3C, Apr. 2023.

[W3C23a] W3C. “WebCodec API‘”. In: (2023). https://www.w3.org
/TR/webcodecs/.

[W3C23b] W3C. “WebTransport API”. In: (2023). https://www.w3.o
rg/TR/webtransport/.

[Wah+94] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. “Efficient
software-based fault isolation”. In: ACM SIGOPS Operating
Systems Review. Vol. 27. 5. ACM. 1994, pp. 203–216.

[Wan+04] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Im-
age quality assessment: from error visibility to structural sim-
ilarity”. In: IEEE transactions on image processing 13.4 (2004),
pp. 600–612.

[Wan+15] K. Wang, Y. Lin, S. M. Blackburn, M. Norrish, and A. L. Hosking.
“Draining the swamp: Micro virtual machines as solid founda-
tion for language development”. In: LIPIcs-Leibniz International
Proceedings in Informatics. Vol. 32. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2015.

[Wie+03] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra.
“Overview of the H. 264/AVC video coding standard”. In: IEEE
Transactions on circuits and systems for video technology 13.7
(2003), pp. 560–576.

[Wir] T. Wirtgen. “xBGP: Faster Innovation in Routing Protocols”.
In.

https://twitter.com/elonmusk/status/1436541063406264320
https://twitter.com/elonmusk/status/1436541063406264320
https://twitter.com/elonmusk/status/1535394359373443073
https://twitter.com/elonmusk/status/1535394359373443073
https://twitter.com/elonmusk/status/1535394359373443073
https://www.w3.org/TR/webcodecs/
https://www.w3.org/TR/webcodecs/
https://www.w3.org/TR/webtransport/
https://www.w3.org/TR/webtransport/


160 BIBLIOGRAPHY

[Wir+19] T. Wirtgen, C. Dénos, Q. De Coninck, M. Jadin, and O. Bonaven-
ture. “The case for pluginized routing protocols”. In: 2019 IEEE
27th International Conference on Network Protocols (ICNP). IEEE.
2019, pp. 1–12.

[Yee+09] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S.
Okasaka, N. Narula, and N. Fullagar. “Native client: A sandbox
for portable, untrusted x86 native code”. In: 2009 30th IEEE
Symposium on Security and Privacy. IEEE. 2009, pp. 79–93.

[Zha+05] Q. Zhang et al. “End-to-end QoS for video delivery over wire-
less Internet”. In: Proceedings of the IEEE 93.1 (2005), pp. 123–
134.

[Zve+21] M. Zverev, P. Garrido, F. Fernández, J. Bilbao, Ö. Alay, S. Fer-
lin, A. Brunstrom, and R. Agüero. “Robust QUIC: Integrating
practical coding in a low latency transport protocol”. In: IEEE
Access 9 (2021), pp. 138225–138244.

[ZZZ04] Q. Zhang, W. Zhu, and Y.-Q. Zhang. “Channel-adaptive re-
source allocation for scalable video transmission over 3G wire-
less network”. In: IEEE TCSVT 14.8 (2004), pp. 1049–1063.


	Acknowledgments
	Table of Contents
	Preamble
	Background
	Sending data over a network
	Transport protocols
	The User Datagram Protocol
	The Transmission Control Protocol

	Reliable data transfer
	Selective-Repeat Automatic Repeat Request
	Loss detection
	Congestion control
	Loss-based congestion control
	BBR

	Transport layer security

	The QUIC protocol
	Reduced and secure connection establishment
	The QUIC packet
	QUIC packet format

	Stream multiplexing: avoiding head-of-line blocking
	Frames: control information as part of the encrypted payload

	QUIC loss recovery
	Loss detection

	A broad class of applications

	Forward Erasure Correction
	Coding theory primer
	Block codes and Reed-Solomon
	Fountain codes and Random Linear Network Coding
	Systematic codes

	Protecting network packets
	Mode of operation
	FEC as a transport loss recovery mechanism


	QUIC-FEC: A general loss recovery QUIC extension
	Forward Erasure Correction for long-delay communications
	Integrating FEC into QUIC
	Defining and exchanging the source and repair symbols
	The FEC Framework
	Studied FEC schemes.

	FEC and the congestion control

	Evaluation
	Methodology
	Experimental design
	Reproducible experiments

	Results with uniform losses
	Specific IFC use-cases
	Direct Air-To-Ground Communication (DA2GC)
	Mobile Satellite Service (MSS)

	Experimental design
	Large files transfers
	Small files transfers
	Comparing FEC codes

	Exploring the impact of redundancy overhead
	The importance of recovery notification

	Results with bursty losses

	Conclusion

	The interactions between FEC and congestion control
	Symbols and packets are conceptually separate data units
	Congestion control behaviour upon symbol recovery

	PQUIC: towards really flexible transport protocols
	Pluginizing QUIC
	Pluglet Runtime Environment (PRE)
	Protocol Operations
	Attaching Protocol Plugins
	Interacting with Applications

	Extending the loss recovery using protocol plugins
	Design & implementation
	Evaluation
	Plugin Overhead

	Validating Plugins
	Conclusion

	FlEC: application-tailored loss recovery using protocol plugins
	Introduction
	Adaptive Forward Erasure Correction
	Bulk file transfer
	Buffer-limited file transfers
	Delay-constrained messaging

	FlEC
	Comparing FlEC and previous work

	Implementation
	Bulk file transfers
	Bulk loss recovery mechanism
	Evaluation FlEC for the bulk scenario
	Experimental design
	Experimenting with a real network
	CPU performance


	Buffer-limited file transfers
	Loss recovery mechanism
	Evaluation
	FlEC for SATCOM
	Transfer completion time and throughput.
	Delay-bandwidth tradeoff.

	Experimental design analysis


	Delay-constrained messaging
	Reliability mechanism
	Application-specific API
	send_fec_protected_msg(msg, deadline)
	next_message_arrival(time)

	Application-tailored stream scheduler
	FECPattern() and ds() for delay-constrained messaging

	Evaluation

	Conclusion

	Starlink: analyzing a new access network
	A new wireless access network
	Testbed and Measurements
	Results
	Latency
	Latency during inactivity
	Latency under load

	Characterizing packet losses
	Packet losses during HTTP/3 transfers
	Packet losses during low bitrate transfers

	Throughput
	Speed test results
	HTTP/3 transfers

	Browsing Performance
	Middleboxes and traffic discrimination

	Conclusion

	QUIRL: improvements for real applications on real networks
	Existing FEC extensions for QUIC
	QUIRL Design principles
	Identifying FEC-protected payloads
	Serializing the repair symbols
	QUIRL and congestion control
	Scheduling the repair symbols

	Implementing QUIRL
	Erasure Correcting Codes
	WebTransport

	Latency-sensitive video streams
	Redundancy scheduler
	Reducing the latency of GStreamer RTP flows
	Starlink setup
	Real network experiments results

	HTTP/3 objects
	Improving curl's TCT over Starlink
	Exploring diverse network configurations with Mininet

	Conclusion

	Conclusion

